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INTRODUCTION
BY STEPHEN HAWKING

A
few years ago the world celebrated the 100th anniversary of
Einstein’s miracle year, the year in which he revolutionized
physics in multiple ways with a series of astonishing new ideas

that brought about profound changes in the way physicists view the
universe. Human intuition tells us that space is a stage upon which
the events of our lives play out, that time is governed by a universal
clock. But in 1905 and the decade that followed, Einstein showed that
space and time do not have identical meanings for observers sitting in
a chair and those flying on a plane, those orbiting with us on earth,
those having tea somewhere in the Virgo cluster, or those being sucked
into a black hole.

Einstein’s ideas once stunned physicists. Today they are automati-
cally incorporated into the equations and formalism learned by every
undergraduate physics major. As long as those ideas stand up, Einstein
wrote in one of the articles in this collection, the Germans will call
him a “German savant,” and the English will call him a “Swiss Jew.”
But if his ideas were ever discredited, he wrote, he would be a “Swiss
Jew” for the Germans and a “German savant” for the English. Today
there are few physicists left who remember Einstein as a living, breath-
ing, and witty human being. Today his ideas of space and time inter-
twined are ingrained in popular culture, and described by writers
several generations down. But the most lucid, not to mention enter-
taining, proponent of Einstein’s ideas has always been Einstein himself.

As he describes in this volume, Einstein’s 1905 special theory of
relativity grew out of a simple observation. The theory of electro-
magnetism discovered by James Clerk Maxwell in the 1860s showed
that whether you are moving toward or away from a beam of light,
the light will always approach you at the same speed. This is not true
of our experience in the everyday world. If you race away from an
onrushing train you will survive for a few more seconds than if you
race toward it (assuming that you don’t get the idea to jump sideways).

ix



In the former case the train’s speed of approach will be the difference
between its speed and your speed (relative to the track). In the latter
case its speed of approach will be the sum of your speeds. The same,
according to Maxwell’s theory, does not apply to the light emitted
from the train’s headlamps. How could the speed of light not appear
slower in the former case and faster in the latter?

By speed we mean distance traveled divided by the time of the
trip. And so, Einstein realized, if we are to take Maxwell’s theory at
face value, we must alter our ideas of space and time. They are not
fixed and unchanging, but adjust according to the observer, bending
or stretching in just the way necessary to keep the speed of light con-
stant. The same bending and stretching means of course that the speed
at which the train itself approaches is also not the simple sum or dif-
ference I described above. But at speeds far less than the speed of light
the difference in adding and subtracting derived by Einstein has only
negligible effect. The same chain of logic, when taken further, requires
also the equivalence of mass and energy, the reason that we can have
atomic energy, and, unfortunately, atomic weapons. The details of
 Einstein’s reasoning, and the simple algebra behind it, are explained
nowhere better than as found here, in Einstein’s own words.

Einstein’s theory of general relativity also grew from a simple
observation. In Newton’s laws of motion there appears a quantity
called the mass, which determines how easily an object accelerates
when a force is applied. A massive truck is far more difficult to bring
to speed than a far less massive Volkswagen. In Newton’s day three
forces were known: electricity, magnetism, and gravity. The resistance
to changing velocity in Newton’s laws of motion does not depend on
which of those forces is applied. But Newton also discovered a law
governing one of those forces, the force of gravity. In that law there
appears another quantity which determines the amount of gravita-
tional pull an object exerts, and the amount of gravitational pull it
feels when in the presence of another object. That quantity is also
called the mass. The two definitions of mass play quite different roles,
but they are both called mass for good reason: it turns out they are

x
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one and the same. Why should they be equivalent? That question, plus
Einstein’s brilliant logic, led to his realization that the scaffolding of
space and time reacts to the presence of matter and energy.

“At a time like the present,” Einstein wrote, “when experience
forces us to seek a newer and more solid foundation, the physicist can-
not simply surrender to the philosopher the critical contemplation of
the theoretical foundations; for, he himself knows best, and feels more
surely where the shoe pinches.” Einstein was not narrowly interested
in science, but also in the philosophy and language of science, and
even its ethical implications. Some of his writings on those subjects,
too, are included here. And. though Einstein wrote the above words
in 1936, today is also a time in which physicists seek a new founda-
tion, and a time in which such metaphysical issues have as much rel-
evance as they did then. Today, since Einstein described space and time
as dynamic variables, we see the universe as having not just one, but
every possible history. We contemplate not only warped space and
time, but whether the universe has additional dimensions. And we
speculate about the very meaning of those concepts, and whether they
are well defined or only approximate. We seek today a unified theory
of all forces, as well as the framework of space and time in which we
experience that the universe unfolds. It is a quest of which Einstein
would have approved, and for which the remarkable work in this vol-
ume provides the foundation.

xi
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The Principle 
of Relativity

W
e can sometimes be fooled into thinking that great scien-
tific breakthroughs, such as Einstein’s theory of relativity,
were made from whole cloth and were completely inde-

pendent of the work that came before. In “The Principle of Relativ-
ity,” we see the context out of which Einstein developed his theory,
including some of the fundamental papers on which it was based.

In order to put this work in context, it is best to consider the state
of physics at the turn of the twentieth century. In 1864, James Clerk
Maxwell developed a complete theory of electricity and magnetism,
and demonstrated that an electrical field is generated by a stationary
charge, and a magnetic field is generated by a moving charge. These
were seen as fundamentally different forces.

Hendrick A. Lorentz, in a series of papers published in 1895 and
1904, asked a seemingly simple question. What happens if a charge is
sitting still, and we are running past it? Lorentz showed that to a mov-
ing observer, a stationary charge will “look like” a moving charge, and
thus, an electric field will look like a magnetic one. Lorentz showed that
to a moving observer, an electromagnetic wave will propagate at the
same speed as to a stationary observer: the speed of light.

In 1905, Einstein reached a similar conclusion, that electric and
magnetic forces are fundamentally related to one another and can
appear in different proportions to observers moving at different speeds.
But Einstein showed much more. He postulated that all physical laws
must be equally valid in any “inertia reference frame” (traveling at
fixed speed and direction) and that for any such observer the speed of
light will be a constant.

These assumptions were well supported by both Maxwell’s theory
and in the experimental work of Michelson and Morley, who showed
that light travels at a constant speed regardless of the motion of the
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earth. Einstein posited that two observers with identical clocks and
meter sticks who are moving relative to one another will each meas-
ure the meter stick of the other as foreshortened, and will measure the
clock of the other as running slow. This seeming paradox lies at the
heart of relativity.

The transformations between moving frames, conventionally
known as the Lorentz transforms, lead to another important correc-
tion to Sir Isaac Newton’s laws of motion. According to Newton,
applying a constant force to a body will accelerate it, and doing so
indefinitely will increase the speed of the body without limit. How-
ever, Einstein’s theory of relativity showed that nothing can exceed the
speed of light—Newton was wrong, but only in the limit where speeds
approached that of light.

Einstein recognized that relativity was incomplete. It only accounted
for systems where bodies moved at constant speeds, whereas in gravita-
tional fields, bodies are constantly being accelerated. He thus developed
his “general theory of relativity” in several landmark papers from 1911
to 1916, the principal results of which are described in chapters VII
and VIII of “The Principle of Relativity.”

In one of his “thought experiments,” Einstein postulated that there
should be no difference between any experiment conducted in an ele-
vator sitting still on the surface of the earth, and one being acceler-
ated from below in deep space. Since an accelerated frame will cause
all projectiles, including light beams, to be bent, Einstein showed that
light will be bent by gravitational fields. In fact, the general theory
slates that it is space and time that are curved, and light or any other
object simply follows a “straight line” through space and time.

As John Archibald Wheeler has put it, “Matter tells space-time
how to curve, and space-time tells matter how to move.” Einstein rec-
ognized that his equations could govern not only light beams and stars,
but also the universe as a whole. He realized that the universe could
not be static and should either expand or collapse, and thus general
relativity forms the basis for the field now known as cosmology as
described in chapter X.

2
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In order to force the universe into an eternally static state, Einstein
introduced an ad hoc term into his field equations, known as the “cos-
mological constant.” When Edwin Hubble discovered the expanding
universe in 1929, Einstein realized his error, and referred to the cos-
mological constant as “the greatest blunder of my life.” In recent years,
the cosmological constant has been reintroduced into cosmology in a
new form—a “dark energy” that pervades the universe. Recent obser-
vations of distant supernovae suggest that dark energy is fueling an
acceleration of the universe.

The model that Einstein came up with is still very current, and
has not yet failed any observational tests on large scales. When we read
through his thoughts on the matter, what remains so remarkable is
how much he, and subsequent thinkers, were able to infer from such
simple starting assumptions.

3
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ON THE ELECTRODYNAMICS

OF MOVING BODIES

BY

A. EINSTEIN

Translated from “Zur Elektrodynamik bewegter Körper,” 
Annalen der Physik, 17, 1905.

IT is known that Maxwell’s electrodynamics—as usually understood
at the present time—when applied to moving bodies, leads to asym-
metries which do not appear to be inherent in the phenomena. Take,
for example, the reciprocal electrodynamic action of a magnet and a
conductor. The observable phenomenon here depends only on the rel-
ative motion of the conductor and the magnet, whereas the custom-
ary view draws a sharp distinction between the two cases in which
either the one or the other of these bodies is in motion. For if the mag-
net is in motion and the conductor at rest, there arises in the neigh-
bourhood of the magnet an electric field with a certain definite energy,
producing a current at the places where parts of the conductor are sit-
uated. But if the magnet is stationary and the conductor in motion,
no electric field arises in the neighbourhood of the magnet. In the
conductor, however, we find an electromotive force, to which in itself
there is no corresponding energy, but which gives rise—assuming
equality of relative motion in the two cases discussed—to electric cur-
rents of the same path and intensity as those produced by the electric
forces in the former case.

Examples of this sort, together with the unsuccessful attempts to
discover any motion of the earth relatively to the “light medium,” sug-
gest that the phenomena of electrodynamics as well as of mechanics
possess no properties corresponding to the idea of absolute rest. They
suggest rather that, as has already been shown to the first order of small
quantities, the same laws of electrodynamics and optics will be valid
for all frames of reference for which the equations of mechanics hold

4
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good.* We will raise this conjecture (the purport of which will hereafter
be called the “Principle of Relativity”) to the status of a postulate, and
also introduce another postulate, which is only apparently irreconcilable
with the former, namely, that light is always propagated in empty space
with a definite velocity c which is independent of the state of motion of
the emitting body. These two postulates suffice for the attainment of a
simple and consistent theory of the electrodynamics of moving bodies
based on Maxwell’s theory for stationary bodies. The introduction of a
“luminiferous ether” will prove to be superfluous inasmuch as the view
here to be developed will not require an “absolutely stationary space” pro-
vided with special properties, nor assign a velocity-vector to a point of
the empty space in which electromagnetic processes take place.

The theory to be developed is based—like all electrodynamics—
on the kinematics of the rigid body, since the assertions of any such
theory have to do with the relationships between rigid bodies (systems
of co-ordinates), clocks, and electromagnetic processes. Insufficient
consideration of this circumstance lies at the root of the difficulties
which the electrodynamics of moving bodies at present encounters.

I. KINEMATICAL PART

§ I. DEFINITION OF SIMULTANEITY

Let us take a system of co-ordinates in which the equations of New-
tonian mechanics hold good.† In order to render our presentation more
precise and to distinguish this system of co-ordinates verbally from oth-
ers which will be introduced hereafter, we call it the “stationary system.”

If a material point is at rest relatively to this system of co-ordinates,
its position can be defined relatively thereto by the employment of
rigid standards of measurement and the methods of Euclidean geom-
etry, and can be expressed in Cartesian co-ordinates.

If we wish to describe the motion of a material point, we give the
values of its co-ordinates as functions of the time. Now we must bear
carefully in mind that a mathematical description of this kind has no

5
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physical meaning unless we are quite clear as to what we understand
by “time.” We have to take into account that all our judgments in
which time plays a part are always judgments of simultaneous events.
If, for instance, I say, “That train arrives here at 7 o’clock,” I mean
something like this: “The pointing of the small hand of my watch to
7 and the arrival of the train are simultaneous events.”*

It might appear possible to overcome all the difficulties attending
the definition of “time” by substituting “the position of the small hand
of my watch” for “time.” And in fact such a definition is satisfactory
when we are concerned with defining a time exclusively for the place
where the watch is located; but it is no longer satisfactory when we
have to connect in time series of events occurring at different places,
or—what comes to the same thing—to evaluate the times of events
occurring at places remote from the watch.

We might, of course, content ourselves with time values deter-
mined by an observer stationed together with the watch at the origin
of the co-ordinates, and co-ordinating the corresponding positions of
the hands with light signals, given out by every event to be timed, and
reaching him through empty space. But this co-ordination has the dis-
advantage that it is not independent of the standpoint of the observer
with the watch or clock, as we know from experience. We arrive at a
much more practical determination along the following line of thought.

If at the point A of space there is a clock, an observer at A can
determine the time values of events in the immediate proximity of A
by finding the positions of the hands which are simultaneous with these
events. If there is at the point B of space another clock in all respects
resembling the one at A, it is possible for an observer at B to determine
the time values of events in the immediate neighbourhood of B. But it
is not possible without further assumption to compare, in respect of
time, an event at A with an event at B. We have so far defined only an
“A time” and a “B time.” We have not defined a common “time” for A
and B, for the latter cannot be defined at all unless we establish by

6
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definition that the “time” required by light to travel from A to B equals
the “time” it requires to travel from B to A. Let a ray of light start at
the “A time” from A toward B, let it at the “B time” be reflected
at B in the direction of A, and arrive again at A at the “A time” .

In accordance with definition the two clocks synchronize if

We assume that this definition of synchronism is free from con-
tradictions, and possible for any number of points; and that the fol-
lowing relations are universally valid:—

1. If the clock at B synchronizes with the clock at A, the clock at
A synchronizes with the clock at B.

2. If the clock at A synchronizes with the clock at B and also with
the clock at C, the clocks at B and C also synchronize with each other.

Thus with the help of certain imaginary physical experiments we have
settled what is to be understood by synchronous stationary clocks located
at different places, and have evidently obtained a definition of “simulta-
neous,” or “synchronous,” and of “time.” The “time” of an event is that
which is given simultaneously with the event by a stationary clock located
at the place of the event, this clock being synchronous, and indeed syn-
chronous for all time determinations, with a specified stationary clock.

In agreement with experience we further assume the quantity

to be a universal constant—the velocity of light in empty space.
It is essential to have time defined by means of stationary clocks

in the stationary system, and the time now defined being appropriate
to the stationary system we call it “the time of the stationary system.”

§ 2. ON THE RELATIVITY OF LENGTHS AND TIMES

The following reflexions are based on the principle of relativity and
on the principle of the constancy of the velocity of light. These two
principles we define as follows:—

1. The laws by which the states of physical systems undergo
change are not affected, whether these changes of state be referred to

2AB

t¿A � tA
� c,

tB � tA � t¿A � tB.

t¿A
tBtA
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the one or the other of two systems of coordinates in uniform trans-
latory motion.

2. Any ray of light moves in the “stationary” system of co-ordinates
with the determined velocity c, whether the ray be emitted by a sta-
tionary or by a moving body. Hence

where time interval is to be taken in the sense of the definition in § 1.
Let there be given a stationary rigid rod; and let its length be l as

measured by a measuring-rod which is also stationary. We now imag-
ine the axis of the rod lying along the axis of x of the stationary sys-
tem of co-ordinates, and that a uniform motion of parallel translation
with velocity v along the axis of x in the direction of increasing x is
then imparted to the rod. We now inquire as to the length of the mov-
ing rod, and imagine its length to be ascertained by the following two
operations:—

(a) The observer moves together with the given measuring-rod
and the rod to be measured, and measures the length of the rod
directly by superposing the measuring-rod, in just the same way as if
all three were at rest.

(b) By means of stationary clocks set up in the stationary system
and synchronizing in accordance with § 1, the observer ascertains at
what points of the stationary system the two ends of the rod to be
measured are located at a definite time. The distance between these
two points, measured by the measuring-rod already employed, which
in this case is at rest, is also a length which may be designated “the
length of the rod.”

In accordance with the principle of relativity the length to be dis-
covered by the operation (a)—we will call it “the length of the rod in
the moving system”—must be equal to the length l of the stationary rod.

The length to be discovered by the operation (b) we will call “the
length of the (moving) rod in the stationary system.” This we shall
determine on the basis of our two principles, and we shall find that
it differs from l.

velocity �
light path

time interval

8
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Current kinematics tacitly assumes that the lengths determined by
these two operations are precisely equal, or in other words, that a mov-
ing rigid body at the epoch t may in geometrical respects be perfectly
represented by the same body at rest in a definite position.

We imagine further that at the two ends A and B of the rod, clocks
are placed which synchronize with the clocks of the stationary system,
that is to say that their indications correspond at any instant to the
“time of the stationary system” at the places where they happen to be.
These clocks are therefore “synchronous in the stationary system.”

We imagine further that with each clock there is a moving
observer, and that these observers apply to both clocks the criterion
established in § 1 for the synchronization of two clocks. Let a ray of
light depart from A at the time* let it be reflected at B at the time

and reach A again at the time Taking into consideration the
principle of the constancy of the velocity of light we find that

and 

where denotes the length of the moving rod—measured in the sta-
tionary system. Observers moving with the moving rod would thus
find that the two clocks were not synchronous, while observers in the
stationary system would declare the clocks to be synchronous.

So we see that we cannot attach any absolute signification to the
concept of simultaneity, but that two events which, viewed from a sys-
tem of co-ordinates, are simultaneous, can no longer be looked upon
as simultaneous events when envisaged from a system which is in
motion relatively to that system.

§ 3. THEORY OF THE TRANSFORMATION OF CO-ORDINATES

AND TIMES FROM A STATIONARY SYSTEM TO ANOTHER

SYSTEM IN UNIFORM MOTION OF TRANSLATION RELATIVELY

TO THE FORMER

Let us in “stationary” space take two systems of coordinates, i.e. two
systems, each of three rigid material lines, perpendicular to one

rAB

t¿A � tB �
rAB

c � v
tB � tA �

rAB

c � v

t¿A.tB,
tA,
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another, and issuing from a point. Let the axes of X of the two systems
coincide, and their axes of Y and Z respectively be parallel. Let each
system be provided with a rigid measuring-rod and a number of
clocks, and let the two measuring-rods, and likewise all the clocks of
the two systems, be in all respects alike.

Now to the origin of one of the two systems (k) let a constant veloc-
ity v be imparted in the direction of the increasing x of the other sta-
tionary system (K), and let this velocity be communicated to the axes of
the co-ordinates, the relevant measuring-rod, and the clocks. To any time
of the stationary system K there then will correspond a definite position
of the axes of the moving system, and from reasons of symmetry we are
entitled to assume that the motion of k may be such that the axes of
the moving system are at the time t (this “t” always denotes a time of
the stationary system) parallel to the axes of the stationary system.

We now imagine space to be measured from the stationary system
K by means of the stationary measuring-rod, and also from the moving
system k by means of the measuring-rod moving with it; and that we
thus obtain the co-ordinates x, y, z, and respectively. Further, let
the time t of the stationary system be determined for all points thereof
at which there are clocks by means of light signals in the manner indi-
cated in § 1; similarly let the time of the moving system be deter-
mined for all points of the moving system at which there are clocks at
rest relatively to that system by applying the method, given in § 1, of
light signals between the points at which the latter clocks are located.

To any system of values x, y, z, t, which completely defines the
place and time of an event in the stationary system, there belongs a
system of values determining that event relatively to the sys-
tem k, and our task is now to find the system of equations connecting
these quantities.

In the first place it is clear that the equations must be linear on
account of the properties of homogeneity which we attribute to space
and time.

If we place it is clear that a point at rest in the sys-
tem k must have a system of values y, z, independent of time. Wex¿,

x¿ � x � vt,

j, h, z, t,

t

j, h, z
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first define as a function of y, z, and t. To do this we have to
express in equations that is nothing else than the summary of the
data of clocks at rest in system k, which have been synchronized
according to the rule given in § 1.

From the origin of system k let a ray be emitted at the time 
along the X-axis to and at the time be reflected thence to the
origin of the co-ordinates, arriving there at the time we then must
have or, by inserting the arguments of the function

and applying the principle of the constancy of the velocity of light
in the stationary system:—

Hence, if be chosen infinitesimally small,

or

It is to be noted that instead of the origin of the co-ordinates we
might have chosen any other point for the point of origin of the ray,
and the equation just obtained is therefore valid for all values of 

An analogous consideration—applied to the axes of Y and Z—it
being borne in mind that light is always propagated along these axes,
when viewed from the stationary system, with the velocity 
gives us

Since is a linear function, it follows from these equations that

where a is a function at present unknown, and where for brevity
it is assumed that at the origin of k, when 

With the help of this result we easily determine the quantities
by expressing in equations that light (as required by thej, h, z

t � 0.t � 0,
f 1v2

t � a at �
v

c2 � v2 x¿b

t

0t
0y

� 0, 
0t
0z

� 0.

21c2 � v22,

x¿, y, z.

0t
0x¿

�
v

c2 � v2 
0t
0t

� 0.

1
2 a

1
c � v �

1
c � v

b 
0t
0t

 �
0t
0x¿

�
1

c � v 
0t
0t

,

x¿

1
2 ct 10, 0, 0, t2�ta0, 0, 0, t �

x¿
c � v �

x¿
c � v
bd � tax¿, 0, 0, t �

x¿
c � vb  .

t

1
2 1t0 � t22 � t1,

t2;
t1x¿,

t0

t

x¿,t
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principle of the constancy of the velocity of light, in combination
with the principle of relativity) is also propagated with velocity c
when measured in the moving system. For a ray of light emitted
at the time in the direction of the increasing 

But the ray moves relatively to the initial point of k, when measured
in the stationary system, with the velocity so that

If we insert this value of t in the equation for we obtain

In an analogous manner we find, by considering rays moving along
the two other axes, that

when

Thus

Substituting for its value, we obtain

where

and is an as yet unknown function of v. If no assumption whatever
be made as to the initial position of the moving system and as to the
zero point of an additive constant is to be placed on the right side
of each of these equations.

t,

f

b �
1211 � v2�c22

,

 z � f 1v2z,
 h � f 1v2y,
 j � f 1v2b 1x � vt2,
 t � f 1v2b 1t � vx�c22,

x¿

h � a 
c21c2 � v22

y and z � a 
c21c2 � v22

z.

y21c2 � v22
� t, x¿ � 0.

h � ct � ac at �
v

c2 � v2 x¿b

j � a  
c2

c2 � v2 x¿.

j,

x¿
c � v � t.

c � v,

j � ct or j � ac at �
v

c2 � v2 x¿b.

jt � 0
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We now have to prove that any ray of light, measured in the mov-
ing system, is propagated with the velocity c, if, as we have assumed,
this is the case in the stationary system; for we have not as yet fur-
nished the proof that the principle of the constancy of the velocity of
light is compatible with the principle of relativity.

At the time when the origin of the co-ordinates is
common to the two systems, let a spherical wave be emitted there-
from, and be propagated with the velocity c in system K. If (x, y, z)
be a point just attained by this wave, then

Transforming this equation with the aid of our equations of trans-
formation we obtain after a simple calculation

The wave under consideration is therefore no less a spherical wave
with velocity of propagation c when viewed in the moving system.
This shows that our two fundamental principles are compatible.*

In the equations of transformation which have been developed there
enters an unknown function of v, which we will now determine.

For this purpose we introduce a third system of co-ordinates 
which relatively to the system k is in a state of parallel translatory
motion parallel to the axis of X, such that the origin of co-ordinates
of system k moves with velocity�v on the axis of X. At the time 
let all three origins coincide, and when let the
time of the system be zero. We call the co-ordinates, measured
in the system and by a twofold application of our equa-
tions of transformation we obtain

,

Since the relations between and do not contain the
time t, the systems K and are at rest with respect to one another,K¿

x, y, z¿x¿, y¿, z¿
 z¿ � f 1�v2z     � f 1v2f 1�v2z.
 y¿ � f1�v2h     � f1v2f1�v2y,
 x¿ � f1�v2b1�v21j � vt2 � f1v2f1�v2x
 t¿ � f1�v2b1�v2 1t � vj�c22 � f1v2f1�v2t,

K¿, x¿, y¿, z¿,
K¿t¿

t � x � y � z � 0
t � 0

K¿,
f

j2 � h2 � z2 � c2t2.

x2 � y2 � z2 � c2t2.

t � t � 0,
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* The equations of the Lorentz transformation may be more simply deduced directly from the condition that in virtue of those equa-
tions the relation shall have as its consequence the second relation j2 � h2 � z2 � c2t2.x2 � y2 � z 2 � c2t2



and it is clear that the transformation from K to must be the iden-
tical transformation. Thus

We now inquire into the signification of We give our attention
to that part of the axis of Y of system k which lies between 

and This part of the axis of Y is
a rod moving perpendicularly to its axis with velocity v relatively to
system K. Its ends possess in K the co-ordinates

and

The length of the rod measured in K is therefore and this gives
us the meaning of the function From reasons of symmetry it is
now evident that the length of a given rod moving perpendicularly to
its axis, measured in the stationary system, must depend only on the
velocity and not on the direction and the sense of the motion. The
length of the moving rod measured in the stationary system does not
change, therefore, if v and are interchanged. Hence follows that

or

It follows from this relation and the one previously found that
so that the transformation equations which have been found

become

where

§ 4. PHYSICAL MEANING OF THE EQUATIONS OBTAINED IN

RESPECT TO MOVING RIGID BODIES AND MOVING CLOCKS

We envisage a rigid sphere* of radius R, at rest relatively to the mov-
ing system k, and with its centre at the origin of co-ordinates of k.

b � 1�211 � v2�c22.

 z � z,
 h � y,
 j � b 1x � vt2,
 t � b 1t � vx�c22,

f 1v2 � 1,

f 1v2 � f 1�v2.
l�f 1v2 � l�f 1�v2,

�v

f 1v2.
l�f1v2;

z2 � 0.y2 � 0,x2 � vt,

x1 � vt,  y1 �
l
f1v2

, z1 � 0

z � 0.h � l,j � 0,z � 0h � 0,
j � 0,

f 1v2.
f 1v2f 1�v2 � 1.

K¿
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The equation of the surface of this sphere moving relatively to the sys-
tem K with velocity v is

The equation of this surface expressed in x, y, z at the time is

A rigid body which, measured in a state of rest, has the form of a
sphere, therefore has in a state of motion—viewed from the station-
ary system—the form of an ellipsoid of revolution with the axes

Thus, whereas the Y and Z dimensions of the sphere (and there-
fore of every rigid body of no matter what form) do not appear mod-
ified by the motion, the X dimension appears shortened in the ratio

i.e. the greater the value of v, the greater the short-
ening. For all moving objects—viewed from the “stationary”
system—shrivel up into plain figures. For velocities greater than that
of light our deliberations become meaningless; we shall, however, find
in what follows, that the velocity of light in our theory plays the part,
physically, of an infinitely great velocity.

It is clear that the same results hold good of bodies at rest in the
“stationary” system, viewed from a system in uniform motion.

Further, we imagine one of the clocks which are qualified to mark
the time t when at rest relatively to the stationary system, and the
time when at rest relatively to the moving system, to be located at
the origin of the co-ordinates of k, and so adjusted that it marks the
time What is the rate of this clock, when viewed from the sta-
tionary system?

Between the quantities x, t, and which refer to the position of
the clock, we have, evidently, and

Therefore,

t � t 211 � v2�c22 � t � 11 � 211 � v2�c22 2t

t �
1211 � v2�c22

 1t � vx�c22.

x � vt
t,

t.

t

v � c
1:211 � v2�c22,

R211 � v2�c22, R, R.

x2

1211 � v2�c2222
� y2 � z2 � R2.

t � 0

j2 � h2 � z2 � R2.
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whence it follows that the time marked by the clock (viewed in
the stationary system) is slow by seconds per
second, or—neglecting magnitudes of fourth and higher order—
by 

From this there ensues the following peculiar consequence. If at
the points A and B of K there are stationary clocks which, viewed in
the stationary system, are synchronous; and if the clock at A is moved
with the velocity v along the line AB to B, then on its arrival at B the
two clocks no longer synchronize, but the clock moved from A to B
lags behind the other which has remained at B by (up to mag-
nitudes of fourth and higher order), t being the time occupied in the
journey from A to B.

It is at once apparent that this result still holds good if the clock
moves from A to B in any polygonal line, and also when the points
A and B coincide.

If we assume that the result proved for a polygonal line is also
valid for a continuously curved line, we arrive at this result: If one of
two synchronous clocks at A is moved in a closed curve with constant
velocity until it returns to A, the journey lasting t seconds, then by
the clock which has remained at rest the travelled clock on its arrival
at A will be second slow. Thence we conclude that a balance-
clock* at the equator must go more slowly, by a very small amount,
than a precisely similar clock situated at one of the poles under oth-
erwise identical conditions.

§ 5. THE COMPOSITION OF VELOCITIES

In the system k moving along the axis of X of the system K with veloc-
ity v, let a point move in accordance with the equations

where and denote constants.
Required: the motion of the point relatively to the system K. If

with the help of the equations of transformation developed in § 3 we

whwj

z� 0,h � �ht,j � wjt,

1
2 tv2�c2

1
2 tv2�c2

1
2 v2�c2.

1 � 211 � v2�c22
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*Not a pendulum-clock, which is physically a system to which the Earth belongs. This case had to be excluded.



introduce the quantities x, y, z, t into the equations of motion of the
point, we obtain

Thus the law of the parallelogram of velocities is valid according
to our theory only to a first approximation. We set

a is then to be looked upon as the angle between the velocities v and
w. After a simple calculation we obtain

.

It is worthy of remark that v and w enter into the expression for the
resultant velocity in a symmetrical manner. If w also has the direction
of the axis of X, we get

.

It follows from this equation that from a composition of two veloci-
ties which are less than c, there always results a velocity less than c.
For if we set and being positive and less
than c, then

It follows, further, that the velocity of light c cannot be altered by
composition with a velocity less than that of light. For this case we obtain

We might also have obtained the formula for V, for the case when v
and w have the same direction, by compounding two transformations

V �
c � w

1 � w�c
� c.

V � c 
2c � k � l

2c � k � l � kl�c
6 c.

lkw � c � l,v � c � k,

V �
v � w

1 � vw�c2

V �
2 �1v2 � w2 � 2vw cos a2 � 1vw sin a�c222�

1� vw cos a�c2

 a � tan�1
 wy �wx,

 w2 � w 2
j � w 2

h ,

 V 2 � a
dx
dt
b

2

� a
dy

dt
b

2

,

 z � 0.

 y �
211 � v2�c22

1� vwj�c2 wht,

 x �
wj � v

1 � vwj�c2 t,
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in accordance with § 3. If in addition to the systems K and k fig-
uring in § 3 we introduce still another system of co-ordinates 
moving parallel to k, its initial point moving on the axis of X with
the velocity w, we obtain equations between the quantities x, y, z,
t and the corresponding quantities of which differ from the
equations found in § 3 only in that the place of “v” is taken by the
quantity

from which we see that such parallel transformations—necessarily—
form a group.

We have now deduced the requisite laws of the theory of kine-
matics corresponding to our two principles, and we proceed to show
their application to electrodynamics.

II. ELECTRODYNAMICAL PART

§ 6. TRANSFORMATION OF THE MAXWELL-HERTZ

EQUATIONS FOR EMPTY SPACE. ON THE NATURE OF

THE ELECTROMOTIVE FORCES OCCURRING IN A MAGNETIC

FIELD DURING MOTION

Let the Maxwell-Hertz equations for empty space hold good for the
stationary system K, so that we have

,

where (X, Y, Z) denotes the vector of the electric force, and (L, M, N)
that of the magnetic force.

If we apply to these equations the transformation developed in
§ 3, by referring the electromagnetic processes to the system of 

1
c  

0N
0t

�
0X
0y

�
0Y
0x

,
1
c  

0Z
0t

�
0M

0x
�

0L

0y
,

1
c  

0M
0t

�
0Z

0x
�

0X

0z
,

1
c  

0Y
0t

�
0L

0z
�

0N

0x
,

1
c  

0L
0t

�
0Y

0z
�

0Z

0y
1
c  

0X
0t

�
0N

0y
�

0M

0z
,

v � w
1� vw�c2 ;

k¿,

k¿
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co-ordinates there introduced, moving with the velocity v, we obtain
the equations

19
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,

.

,

,

,

,�
0
0j

 ebaY �
v
c Nb f

1
c  

0
0t

 eb aN �
v
c Yb f �

0X
0h

1
c  

0
0t

 e baM �
v
c Zb f �

0
0j

 e baZ �
v
c Mbf�

0X
0z

1
c  

0L
0t

�
0
0z

 e b aY �
v
c Nb f �

0
0h

 e baZ �
v
c Mb f

1
c  

0
0t

 e baZ �
v
c Mb f �

0
0j

 eb aM �
v
c Zb f �

0L
0h

�
0
0z
e baN �

v
c Yb f

1
c  

0
0t

 eb aY �
v
c Nb f �

0L
0j

1
c  

0X
0t

�
0

0h
 eb aN �

v
c Yb f �

0
0z

 ebaM �
v
c Zb f

where

Now the principle of relativity requires that if the Maxwell-Hertz
equations for empty space hold good in system K, they also hold good
in system k; that is to say that the vectors of the electric and the mag-
netic force— and —of the moving system k,
which are defined by their ponderomotive effects on electric or mag-
netic masses respectively, satisfy the following equations:—

,

Evidently the two systems of equations found for system k must
express exactly the same thing, since both systems of equations are
equivalent to the Maxwell-Hertz equations for system K. Since, fur-
ther, the equations of the two systems agree, with the exception of
the symbols for the vectors, it follows that the functions occurring in

1
c  

0N¿
0t

�
0X¿
0h

�
0Y¿
0j

.
1
c  

0Z¿
0t

�
0M¿
0j

�
0L¿
0h

1
c  

0M¿
0t

�
0Z¿
0j

�
0X¿
0z

,
1
c  

0Y¿
0t

�
0L¿
0z

�
0N¿
0j

,

1
c  

0L¿
0t

�
0Y¿
0z

�
0Z¿
0h

,
1
c  

0X¿
0t

�
0N¿
0h

�
0M¿
0z

,

1L¿, M¿, N¿ 21X¿, Y¿, Z¿ 2

b � 1�211 � v2�c22.



the systems of equations at corresponding places must agree, with the
exception of a factor which is common for all functions of the
one system of equations, and is independent of and but
depends upon v. Thus we have the relations

If we now form the reciprocal of this system of equations, firstly
by solving the equations just obtained, and secondly by applying the
equations to the inverse transformation (from k to K), which is char-
acterized by the velocity – v, it follows, when we consider that the two
systems of equations thus obtained must be identical, that

Further, from reasons of symmetry* 
and therefore

and our equations assume the form

,

.

As to the interpretation of these equations we make the following
remarks: Let a point charge of electricity have the magnitude “one”
when measured in the stationary system K, i.e. let it when at rest in
the stationary system exert a force of one dyne upon an equal quan-
tity of electricity at a distance of one cm. By the principle of relativ-
ity this electric charge is also of the magnitude “one” when measured
in the moving system. If this quantity of electricity is at rest relatively
to the stationary system, then by definition the vector (X, Y, Z) is
equal to the force acting upon it. If the quantity of electricity is at

Z¿ � baZ �
v
c Mb, N ¿ � baN �

v
c Yb

Y ¿ � baY �
v
c Nb, M¿ � baM �

v
c Zb

L¿ � L,X¿ � X,

c 1v2 � 1,

c 1v2 � c 1�v2.c 1v2c 1�v2 � 1.

N¿ � c 1v2baN �
v
c Yb.Z¿ � c 1v2baZ �

v
c Mb,

M¿ � c 1v2baM �
v
c Zb ,Y ¿ � c 1v2baY �

v
c Nb,

L¿ � c 1v2L,X¿ � c 1v2X,

tj, h, z
c 1v2,
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*If, for example, and then from reasons of symmetry it is clear that when v ohanges sign
without changing its numerical value, must also change sign without changing its numerical value.Y¿

N � O,X � Y � Z � L � M � O,



rest relatively to the moving system (at least at the relevant instant),
then the force acting upon it, measured in the moving system, is equal
to the vector Consequently the first three equations above
allow themselves to be clothed in words in the two following ways:—

1. If a unit electric point charge is in motion in an electromag-
netic field, there acts upon it, in addition to the electric force, an “elec-
tromotive force” which, if we neglect the terms multiplied by the second
and higher powers of , is equal to the vector-product of the veloc-
ity of the charge and the magnetic force, divided by the velocity of
light. (Old manner of expression.)

2. If a unit electric point charge is in motion in an electromag-
netic field, the force acting upon it is equal to the electric force which
is present at the locality of the charge, and which we ascertain by trans-
formation of the field to a system of co-ordinates at rest relatively to
the electrical charge. (New manner of expression.)

The analogy holds with “magnetomotive forces.” We see that elec-
tromotive force plays in the developed theory merely the part of an
auxiliary concept, which owes its introduction to the circumstance that
electric and magnetic forces do not exist independently of the state of
motion of the system of co-ordinates.

Furthermore it is clear that the asymmetry mentioned in the
introduction as arising when we consider the currents produced by the
relative motion of a magnet and a conductor, now disappears. More-
over, questions as to the “seat” of electrodynamic electromotive forces
(unipolar machines) now have no point.

§ 7. THEORY OF DOPPLER’S PRINCIPLE AND OF ABERRATION

In the system K, very far from the origin of co-ordinates, let there be
a source of electrodynamic waves, which in a part of space containing
the origin of co-ordinates may be represented to a sufficient degree of
approximation by the equations

N � N0 sin £,Z � Z0 sin £,
M � M0 sin £,Y � Y0 sin £,
L � L0 sin £,X � X0 sin £,

v�c

1X¿, Y¿, Z¿ 2.
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where

Here and are the vectors defining the ampli-
tude of the wave-train, and l, m, n the direction-cosines of the wave-
normals. We wish to know the constitution of these waves, when they
are examined by an observer at rest in the moving system k.

Applying the equations of transformation found in § 6 for elec-
tric and magnetic forces, and those found in § 3 for the co-ordinates
and the time, we obtain directly

where

,

From the equation for it follows that if an observer is moving
with velocity relatively to an infinitely distant source of light of fre-
quency , in such a way that the connecting line “source—observer”
makes the angle with the velocity of the observer referred to a sys-
tem of co-ordinates which is at rest relatively to the source of light,
the frequency of the light perceived by the observer is given by the
equation

n¿ � n 
1 � cos f # v�c211 � v2�c22

.

n¿

f

n

v
�¿

 n¿ �
n

b 11 � lv�c2
.

 m¿ �
m

b 11 � lv�c2

 l¿ �
l � v�c

1 � lv�c¿

 �¿ � �b 11 � lv�c2,

£¿ � �¿ e t �
1
c 1l¿j � m¿h � n¿z2 f

N¿ � b 1N0 � vY0 �c2  sin £¿,Z¿ � b 1Z0 � vM0 �c2  sin £¿,
M¿ � b 1M0 � vZ0 �c2  sin £¿,Y¿ � b 1Y0 � vN0 �c2  sin £¿,
L¿ � L0 sin £¿,X¿ � X0 sin £¿,

1L0, M0, N021X 0, Y0, Z02

£ � � e t �
1
c 1lx � my � nz2 f .
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This is Doppler’s principle for any velocities whatever. When 
the equation assumes the perspicuous form

We see that, in contrast with the customary view, when 
If we call the angle between the wave-normal (direction of the ray)

in the moving system and the connecting line “source—observer” 
the equation for assumes the form

This equation expresses the law of aberration in its most general form.
If the equation becomes simply

We still have to find the amplitude of the waves, as it appears in
the moving system. If we call the amplitude of the electric or mag-
netic force A or A¿ respectively, accordingly as it is measured in the
stationary system or in the moving system, we obtain

which equation, if simplifies into

It follows from these results that to an observer approaching a
source of light with the velocity c, this source of light must appear of
infinite intensity.

§ 8. TRANSFORMATION OF THE ENERGY OF LIGHT RAYS.
THEORY OF THE PRESSURE OF RADIATION EXERTED

ON PERFECT REFLECTORS

Since equals the energy of light per unit of volume, we have to
regard by the principle of relativity, as the energy of light in
the moving system. Thus would be the ratio of the “measured
in motion” to the “measured at rest” energy of a given light complex,
if the volume of a light complex were the same, whether measured in

A¿2�A2

A¿2�8p,
A2�8p

A¿2 � A2 
1 � v�c
1 � v�c

.

f � 0,

A¿2 � A2
11 � cos f # v�c22

1 � v2�c2

cos f¿ � �v�c.
f � 1

2p,

cos f¿ �
cos f � v�c

1 � cos f # v�c
.

l¿
f¿,

n¿ � q.v � �c,

n¿ � nB 1 � v�c
1 � v�c

.

f � 0
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K or in k. But this is not the case. If l, m, n are the direction-cosines
of the wave-normals of the light in the stationary system, no energy
passes through the surface elements of a spherical surface moving with
the velocity of light:—

We may therefore say that this surface permanently encloses the same
light complex. We inquire as to the quantity of energy enclosed by
this surface, viewed in system k, that is, as to the energy of the light
complex relatively to the system k.

The spherical surface—viewed in the moving system—is an ellip-
soidal surface, the equation for which, at the time is

If S is the volume of the sphere, and S¿ that of this ellipsoid, then by
a simple calculation

Thus, if we call the light energy enclosed by this surface E when it is
measured in the stationary system, and when measured in the mov-
ing system, we obtain

and this formula, when simplifies into

It is remarkable that the energy and the frequency of a light com-
plex vary with the state of motion of the observer in accordance with
the same law.

Now let the co-ordinate plane be a perfectly reflecting sur-
face, at which the plane waves considered in § 7 are reflected. We
seek for the pressure of light exerted on the reflecting surface, and for
the direction, frequency, and intensity of the light after reflexion.

Let the incidental light be defined by the quantities A, 
, (referred to system K). Viewed from k the correspondingncos f

j � 0

E¿
E

� B1 � v�c
1 � v�c

.

f � 0,

E¿
E

�
A¿2S¿
A2S

�
1 � cos f # v�c211 � v2�c22

,

E¿

S¿
S

�
21 � v2�c2

1 � cos f # v�c
.

1bj � lbjv�c22 � 1h � mbjv�c22 � 1z � nbjv�c22 � R2.
t � 0,

1x � lct22 � 1 y � mct22 � 1z � nct22 � R2.
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quantities are

For the reflected light, referring the process to system k, we obtain

Finally, by transforming back to the stationary system K, we obtain
for the reflected light

The energy (measured in the stationary system) which is inci-
dent upon unit area of the mirror in unit time is evidently

The energy leaving the unit of surface of the
mirror in the unit of time is The differ-
ence of these two expressions is, by the principle of energy, the work
done by the pressure of light in the unit of time. If we set down
this work as equal to the product Pv, where P is the pressure of
light, we obtain

In agreement with experiment and with other theories, we obtain to
a first approximation

P � 2 # A2

8p
 cos2

 f.

P � 2 # A2

8p
 
1cos f � v�c22

1 � v2�c2 .

A‡2 1�c cos f‡ � v2�8p.
A2 1c cos f � v2�8p.

 n‡ � n–
1� cos f–v�c211 � v2�c22

� n  
1 � 2 cos f # v�c � v2�c2

1 � v2�c2 .

 cos f‡ �
cos f– � v�c

1 � cos f– # v�c
� �

11 � v2�c22  cos f � 2v�c
1 � 2 cos f # v�c � v2�c2

 A‡ � A–
1 �  cos f– # v�c211 � v2�c22

� A 
1 � 2 cos f # v�c � v2�c2

1 � v2�c2 ,

 n– � n¿
 cos f– � �cos f¿

 A– � A¿

 n¿ � n 
1 � cos f # v�c211 � v2�c22

.

 cos f¿ �
cos f � v�c

1 � cos f # v�c
,

 A¿ � A 
1 � cos f # v�c211 � v2�c22

,
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All problems in the optics of moving bodies can be solved by
the method here employed. What is essential is, that the electric
and magnetic force of the light which is influenced by a moving
body, be transformed into a system of co-ordinates at rest relatively
to the body. By this means all problems in the optics of moving
bodies will be reduced to a series of problems in the optics of sta-
tionary bodies.

§ 9. TRANSFORMATION OF THE MAXWELL-HERTZ EQUATIONS

WHEN CONVECTION-CURRENTS ARE TAKEN INTO ACCOUNT

We start from the equations

where

denotes times the density of electricity, and the velocity-
vector of the charge. If we imagine the electric charges to be invari-
ably coupled to small rigid bodies (ions, electrons), these equations are
the electromagnetic basis of the Lorentzian electrodynamics and optics
of moving bodies.

Let these equations be valid in the system K, and transform them,
with the assistance of the equations of transformation given in §§ 3
and 6, to the system k. We then obtain the equations
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where

and

Since—as follows from the theorem of addition of velocities (§ 5)—
the vector is nothing else than the velocity of the electric
charge, measured in the system k, we have the proof that, on the basis
of our kinematical principles, the electrodynamic foundation of Lorentz’s
theory of the electrodynamics of moving bodies is in agreement with
the principle of relativity.

In addition I may briefly remark that the following important law may
easily be deduced from the developed equations: If an electrically charged
body is in motion anywhere in space without altering its charge when
regarded from a system of co-ordinates moving with the body, its charge
also remains—when regarded from the “stationary” system K—constant.

§ 10. DYNAMICS OF THE SLOWLY ACCELERATED ELECTRON

Let there be in motion in an electromagnetic field an electrically
charged particle (in the sequel called an “electron”), for the law of
motion of which we assume as follows:—

If the electron is at rest at a given epoch, the motion of the elec-
tron ensues in the next instant of time according to the equations

 m 
d 2z
dt 2 � eZ

 m 
d 2y

dt2 � eY

 m
d 2x
dt 2 � eX

1uj, uh, uz2

 � b 11 � uxv�c22r.

 r¿ �
0X¿
0j

�
0Y¿
0h

�
0Z¿
0z

 uz �
uz

b 11 � uxv�c22
,

 uh �
uy

b 11 � uxv�c22

 uj �
ux � v

1 � uxv�c2
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where x, y, z denote the co-ordinates of the electron, and m the mass
of the electron, as long as its motion is slow.

Now, secondly, let the velocity of the electron at a given epoch be
v. We seek the law of motion of the electron in the immediately ensu-
ing instants of time.

Without affecting the general character of our considerations, we
may and will assume that the electron, at the moment when we give it
our attention, is at the origin of the co-ordinates, and moves with the
velocity v along the axis of X of the system K. It is then clear that at the
given moment the electron is at rest relatively to a system of co-
ordinates which is in parallel motion with velocity v along the axis of X.

From the above assumption, in combination with the principle of
relativity, it is clear that in the immediately ensuing time (for small
values of t) the electron, viewed from the system k, moves in accor-
dance with the equations

in which the symbols refer to the system k. If, fur-
ther, we decide that when then 
the transformation equations of §§ 3 and 6 hold good, so that we have

With the help of these equations we transform the above equa-
tions of motion from system k to system K, and obtain

. . . (A)

 
d 2z
dt 2 �

e

mb
aZ �

v
c Mb

 
d 2y

dt2 �
e

mb
aY �

v
c Nb

 
d 2x
dt2 �

e

mb3 X

X¿ � X, Y ¿ � b 1Y � vN�c2, Z¿ � b 1Z � vM�c2.
j � b 1x � vt2, h � y, z � z, t � b 1t � vx�c 22

� z � 0,t� j� ht � x � y � z � 0
j, h, z, t, X ¿, Y ¿, Z ¿

 m 
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 m
d 2h

dt2 � eY¿,
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d 2j

dt2 � eX¿,

1t � 02
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Taking the ordinary point of view we now inquire as to the “lon-
gitudinal” and the “transverse” mass of the moving electron. We write
the equations (A) in the form

and remark firstly that are the components of the pon-
deromotive force acting upon the electron, and are so indeed as viewed
in a system moving at the moment with the electron, with the same
velocity as the electron. (This force might be measured, for example,
by a spring balance at rest in the last-mentioned system.) Now if we
call this force simply “the force acting upon the electron,”* and main-
tain the equation—mass � acceleration � force—and if we also decide
that the accelerations are to be measured in the stationary System K,
we derive from the above equations

With a different definition of force and acceleration we should
naturally obtain other values for the masses. This shows us that in
comparing different theories of the motion of the electron we must
proceed very cautiously.

We remark that these results as to the mass are also valid for pon-
derable material points, because a ponderable material point can be
made into an electron (in our sense of the word) by the addition of
an electric charge, no matter how small.

We will now determine the kinetic energy of the electron. If an
electron moves from rest at the origin of co-ordinates of the system

 Transverse m ass �
m

1 � v2�c2.

 Longitudinal m ass �
m

121 � v2�c223
.

eZ¿eY¿,eX¿,

 mb2 
d 2z
dt2 � eb aZ �

v
c Mb � eZ¿,

 mb2 
d 2y

dt2 � eb aY �
v
c Nb � eY ¿,

 mb3 
d 2x
dt2 � eX � eX¿,
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*The definition of force here given is not advantageous, as was first shown by M. Planck. It is more to the point to define force in
such a way that the laws of momentum and energy assume the simplest form.



K along the axis of X under the action of an electrostatic force
X, it is clear that the energy withdrawn from the electrostatic field
has the value As the electron is to be slowly accelerated,
and consequently may not give off any energy in the form of radi-
ation, the energy withdrawn from the electrostatic field must be
put down as equal to the energy of motion W of the electron. Bear-
ing in mind that during the whole process of motion which we
are considering, the first of the equations (A) applies, we therefore
obtain

Thus, when W becomes infinite. Velocities greater than
that of light have—as in our previous results—no possibility of exis-
tence.

This expression for the kinetic energy must also, by virtue of the
argument stated above, apply to ponderable masses as well.

We will now enumerate the properties of the motion of the elec-
tron which result from the system of equations (A), and are accessi-
ble to experiment.

1. From the second equation of the system (A) it follows that an
electric force Y and a magnetic force N have an equally strong deflec-
tive action on an electron moving with the velocity v, when 
Thus we see that it is possible by our theory to determine the veloc-
ity of the electron from the ratio of the magnetic power of deflexion

to the electric power of deflexion for any velocity, by applying
the law

This relationship may be tested experimentally, since the velocity
of the electron can be directly measured, e.g. by means of rapidly oscil-
lating electric and magnetic fields.

Am

Ae
�

v
c .

Ae,Am

Y � Nv�c.

v � c,

 � mc2 e
121 � v2�c2

� 1f .

 W � �eXdx � m�
v

0

b3vdv

�eX dx.
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2. From the deduction for the kinetic energy of the electron it fol-
lows that between the potential difference, P, traversed and the
acquired velocity v of the electron there must be the relationship

3. We calculate the radius of curvature of the path of the electron
when a magnetic force N is present (as the only deflective force), act-
ing perpendicularly to the velocity of the electron. From the second
of the equations (A) we obtain

or

These three relationships are a complete expression for the laws
according to which, by the theory here advanced, the electron must
move.

In conclusion I wish to say that in working at the problem here
dealt with I have had the loyal assistance of my friend and colleague M.
Besso, and that I am indebted to him for several valuable suggestions.

R �
mc2

e
# v�c211 � v2�c22

# 1
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d 2y
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v2

R
�
e

m 
v
c NB1 �

v 2

c2
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e

c 2 e
121 � v2�c2

�1f

31

A STUBBORNLY PERSISTENT ILLUSION



DOES THE INERTIA OF A

BODY DEPEND UPON ITS

ENERGY-CONTENT?
BY

A. EINSTEIN

Translated from “Ist die Trägheit eines Körpers von seinem Energiegehalt
abhängig?” Annalen der Physik, 17, 1905.

The results of the previous investigation lead to a very interesting con-
clusion, which is here to be deduced.

I based that investigation on the Maxwell-Hertz equations for
empty space, together with the Maxwellian expression for the electro-
magnetic energy of space, and in addition the principle that:—

The laws by which the states of physical systems alter are independent
of the alternative, to which of two systems of coordinates, in uniform
motion of parallel translation relatively to each other, these alterations of
state are referred (principle of relativity).

With these principles* as my basis I deduced inter alia the fol-
lowing result (§ 8):—

Let a system of plane waves of light, referred to the system of co-
ordinates (x, y, z), possess the energy l ; let the direction of the ray
(the wave-normal) make an angle with the axis of x of the system.
If we introduce a new system of co-ordinates moving in uni-
form parallel translation with respect to the system (x, y, z), and having
its origin of co-ordinates in motion along the axis of x with the veloc-
ity v, then this quantity of light—measured in the system —
possesses the energy

l * � l 
1 �

v
c  cos f11 � v2�c2

1j, h, z2

1j, h, z2
f
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where c denotes the velocity of light. We shall make use of this result
in what follows.

Let there be a stationary body in the system (x, y, z), and let its
energy—referred to the system (x, y, z)—be Let the energy of the body
relative to the system , moving as above with the velocity v, be 

Let this body send out, in a direction making an angle with the axis
of x, plane waves of light, of energy measured relatively to (x, y, z), and
simultaneously an equal quantity of light in the opposite direction.
Meanwhile the body remains at rest with respect to the system (x, y, z).
The principle of energy must apply to this process, and in fact (by the
principle of relativity) with respect to both systems of co-ordinates. If
we call the energy of the body after the emission of light or 
respectively, measured relatively to the system (x, y, z) or respec-
tively, then by employing the relation given above we obtain

By subtraction we obtain from these equations

The two differences of the form occurring in this expression have
simple physical significations. H and E are energy values of the same body
referred to two systems of co-ordinates which are in motion relatively to
each other, the body being at rest in one of the two systems (system (x,
y, z)). Thus it is clear that the difference can differ from the
kinetic energy K of the body, with respect to the other system ,
only by an additive constant C, which depends on the choice of the arbi-
trary additive constants of the energies H and E. Thus we may place

 H1 � E1 � K1 � C,
 H0 � E0 � K0 � C,

1j, h, z2
H � E

H � E

H0 � E0 � 1H1 � E12 � L e
121 � v 2�c 2

� 1 f .

 � H1 �
L21� v2�c2

.

 H0 � H1 � 1
2 L 

1�
v
c  cos f21 � v2�c2

� 1
2 L

1�
v
c  cos f21 � v2�c2

 E0 � E1 � 1
2 L � 1

2 L,

1j, h, z2
H1E1

1
2L

f

H0.1j, h, z2
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since C does not change during the emission of light. So we have

The kinetic energy of the body with respect to dimin-
ishes as a result of the emission of light, and the amount of diminu-
tion is independent of the properties of the body. Moreover, the dif-
ference like the kinetic energy of the electron (§ 10),
depends on the velocity.

Neglecting magnitudes of fourth and higher orders we may place

From this equation it directly follows that:—
If a body gives off the energy L in the form of radiation, its mass

diminishes by The fact that the energy withdrawn from the body
becomes energy of radiation evidently makes no difference, so that we
are led to the more general conclusion that

The mass of a body is a measure of its energy-content; if the energy
changes by L, the mass changes in the same sense by the
energy being measured in ergs, and the mass in grammes.

It is not impossible that with bodies whose energy-content is vari-
able to a high degree (e.g. with radium salts) the theory may be suc-
cessfully put to the test.

If the theory corresponds to the facts, radiation conveys inertia
between the emitting and absorbing bodies.

L�9 � 1020,

L�c2.

K0 � K1 �
1

2
 
L
c2 v2.

K0 � K1,

1j, h, z2

K0 � K1 � L e
121 � v2�c2

� 1f .
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ON THE INFLUENCE OF

GRAVITATION ON THE

PROPAGATION OF LIGHT
BY

A. EINSTEIN

Translated from “Über den Einfluss der Schwerkraft auf die Ausbreitung 
des Lichtes,” Annalen der Physik, 35, 1911.

In a memoir published four years ago* I tried to answer the question
whether the propagation of light is influenced by gravitation. I return
to this theme, because my previous presentation of the subject does
not satisfy me, and for a stronger reason, because I now see that one
of the most important consequences of my former treatment is capa-
ble of being tested experimentally. For it follows from the theory here
to be brought forward, that rays of light, passing close to the sun, are
deflected by its gravitational field, so that the angular distance between
the sun and a fixed star appearing near to it is apparently increased
by nearly a second of arc.

In the course of these reflexions further results are yielded which
relate to gravitation. But as the exposition of the entire group of con-
siderations would be rather difficult to follow, only a few quite ele-
mentary reflexions will be given in the following pages, from which
the reader will readily be able to inform himself as to the suppositions
of the theory and its line of thought. The relations here deduced, even
if the theoretical foundation is sound, are valid only to a first approx-
imation.

§ 1. A HYPOTHESIS AS TO THE PHYSICAL NATURE

OF THE GRAVITATIONAL FIELD

In a homogeneous gravitational field (acceleration of gravity let
there be a stationary system of co-ordinates K, orientated so that

g2
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the lines of force of the gravitational field run in the negative direc-
tion of the axis of z. In a space free of gravitational fields let there
be a second system of coordinates moving with uniform accel-
eration in the positive direction of its axis of z. To avoid unnec-
essary complications, let us for the present disregard the theory of
relativity, and regard both systems from the customary point of view
of kinematics, and the movements occurring in them from that of
ordinary mechanics.

Relatively to K, as well as relatively to material points which are
not subjected to the action of other material points, move in keeping
with the equations

For the accelerated system this follows directly from Galileo’s prin-
ciple, but for the system K, at rest in a homogeneous gravitational field,
from the experience that all bodies in such a field are equally and uni-
formly accelerated. This experience, of the equal falling of all bodies in
the gravitational field, is one of the most universal which the observa-
tion of nature has yielded; but in spite of that the law has not found
any place in the foundations of our edifice of the physical universe.

But we arrive at a very satisfactory interpretation of this law of expe-
rience, if we assume that the systems K and are physically exactly
equivalent, that is, if we assume that we may just as well regard the sys-
tem K as being in a space free from gravitational fields, if we then regard
K as uniformly accelerated. This assumption of exact physical equiva-
lence makes it impossible for us to speak of the absolute acceleration of
the system of reference, just as the usual theory of relativity forbids us
to talk of the absolute velocity of a system;* and it makes the equal
falling of all bodies in a gravitational field seem a matter of course.

As long as we restrict ourselves to purely mechanical processes in
the realm where Newton’s mechanics holds sway, we are certain of the
equivalence of the systems K and .K¿

K¿

K¿

d 2z
dt 2 � �g.

d 2y

dt2 � 0,
d 2x
dt2 � 0,

K¿,

1g2

K¿,
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more than, by a transformation of relativity, we can transform all points of a medium in any kind of motion to rest.



But this view of ours will not have any deeper significance unless the
systems K and are equivalent with respect to all physical processes,
that is, unless the laws of nature with respect to K are in entire agree-
ment with those with respect to By assuming this to be so, we
arrive at a principle which, if it is really true, has great heuristic impor-
tance. For by theoretical consideration of processes which take place
relatively to a system of reference with uniform acceleration, we obtain
information as to the career of processes in a homogeneous gravita-
tional field. We shall now show, first of all, from the standpoint of the
ordinary theory of relativity, what degree of probability is inherent in
our hypothesis.

§ 2. ON THE GRAVITATION OF ENERGY

One result yielded by the theory of relativity is that the inertia mass of
a body increases with the energy it contains; if the increase of energy
amounts to E, the increase in inertia mass is equal to when c
denotes the velocity of light. Now is there an increase of gravitating mass
corresponding to this increase of inertia mass? If not, then a body would
fall in the same gravitational field with varying acceleration according
to the energy it contained. That highly satisfactory result of the theory
of relativity by which the law of the conservation of mass is merged in
the law of conservation of energy could not be maintained, because it
would compel us to abandon the law of the conservation of mass in its
old form for inertia mass, and maintain it for gravitating mass.

But this must be regarded as very improbable. On the other hand,
the usual theory of relativity does not provide us with any argument
from which to infer that the weight of a body depends on the energy
contained in it. But we shall show that our hypothesis of the equiva-
lence of the systems K and gives us gravitation of energy as a nec-
essary consequence.

Let the two material systems and provided with instru-
ments, of measurement, be situated on the z-axis of K at the dis-
tance h from each other,* so that the gravitation potential in isS2

S2,S1

K¿

E�c2,

K¿.

K¿
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greater than that in by Let a definite quantity of energy E be
emitted from towards Let the quantities of energy in and

be measured by contrivances which—brought to one place in the
system z and there compared—shall be perfectly alike. As to the
process of this conveyance of energy by radiation we can make no
a priori assertion, because we do not know the influence of the grav-
itational field on the radiation and the measuring instruments in 
and 

But by our postulate of the equivalence of K and we are able,
in place of the system K in a homogeneous gravitational field, to set
the gravitation-free system which moves with uniform acceleration
in the direction of positive z, and with the z-axis of which the mate-
rial systems and are rigidly connected.

We judge of the process of the transference of energy by radia-
tion from to from a system which is to be free from accel-

eration. At the moment when the radiation
energy is emitted from toward let the
velocity of relatively to be zero. The radi-
ation will arrive at when the time has
elapsed (to a first approximation). But at this
moment the velocity of relatively to is

Therefore by the ordinary theory of
relativity the radiation arriving at does not
possess the energy but a greater energy 
which is related to to a first approximation by
the equation*

. . (1)

By our assumption exactly the same relation holds if the same
process takes place in the system K, which is not accelerated, but
is provided with a gravitational field. In this case we may replace

by the potential of the gravitation vector in if the S2,£gh

E1 � E2a1 �
v
cb � E2 a1 � g

h
c2b

E2

E1,E2,
S1

gh�c � v.
K0S1

h�cS1

K0K¿
S1,S2E2

K0,S1S2

S2S1

K¿,

K¿
S2.

S1

S2

S1S1.S2

gh.S1
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arbitrary constant of in is equated to zero. We then have the
equation

. . . (1a)

This equation expresses the law of energy for the process under
observation. The energy arriving at is greater than the energy

measured by the same means, which was emitted in , the
excess being the potential energy of the mass in the gravita-
tional field. It thus proves that for the fulfilment of the principle
of energy we have to ascribe to the energy E, before its emission
in a potential energy due to gravity, which corresponds to the
gravitational mass Our assumption of the equivalence of K
and thus removes the difficulty mentioned at the beginning of
this paragraph which is left unsolved by the ordinary theory of
relativity.

The meaning of this result is shown particularly clearly if we con-
sider the following cycle of operations:—

1. The energy E, as measured in is emitted in the form of radi-
ation in towards where, by the result just obtained, the energy

as measured in is absorbed.
2. A body W of mass M is lowered from to work 

being done in the process.
3. The energy E is transferred from to the body W while W is

in Let the gravitational mass M be thereby changed so that it
acquires the value M�.

4. Let W be again raised to work being done in the
process.

5. Let E be transferred from W back to 
The effect of this cycle is simply that has undergone the increase

of energy and that the quantity of energy has
been conveyed to the system in the form of mechanical work. By the
principle of energy, we must therefore have

Eg  
h
c2 � M¿gh � Mgh,

M¿gh � MghEgh�c2,
S1

S2.

M¿ghS2,

S1.
S1

MghS1,S2

S1,E 11 � gh�c22,
S1,S2

S2,

K¿
E�c2.

S2,

E2 �c2

S2E2,
S1E1

E1 � E2 �
E2

c2 £

S1£
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or
. . . . (1b)

The increase in gravitational mass is thus equal to and therefore
equal to the increase in inertia mass as given by the theory of relativity.

The result emerges still more directly from the equivalence of the
systems K and according to which the gravitational mass in respect
of K is exactly equal to the inertia mass in respect of energy must
therefore possess a gravitational mass which is equal to its inertia mass.
If a mass be suspended on a spring balance in the system the
balance will indicate the apparent weight on account of the iner-
tia of If the quantity of energy E be transferred to the spring
balance, by the law of the inertia of energy, will indicate 
By reason of our fundamental assumption exactly the same thing must
occur when the experiment is repeated in the system K, that is, in the
gravitational field.

§ 3. TIME AND THE VELOCITY OF LIGHT IN THE

GRAVITATIONAL FIELD

If the radiation emitted in the uniformly accelerated system K’ in 
toward had the frequency relatively to the clock in then, rel-
atively to at its arrival in it no longer has the frequency rel-
atively to an identical clock in but a greater frequency such that
to a first approximation

. . . . (2 )

For if we again introduce the unaccelerated system of reference 
relatively to which, at the time of the emission of light, has no
velocity, then at the time of arrival of the radiation at has, rel-
atively to the velocity from which, by Doppler’s principle,
the relation as given results immediately.

In agreement with our assumption of the equivalence of the sys-
tems and K, this equation also holds for the stationary system of
co-ordinates K, provided with a uniform gravitational field, if in it the
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transference by radiation takes place as described. It follows, then, that
a ray of light emitted in with a definite gravitational potential, and
possessing at its emission the frequency —compared with a clock in

—will, at its arrival in possess a different frequency —measured
by an identical clock in For we substitute the gravitational
potential of —that of being taken as zero—and assume that
the relation which we have deduced for the homogeneous gravitational
field also holds for other forms of field. Then

. . . . (2a)

This result (which by our deduction is valid to a first approximation)
permits, in the first place, of the following application. Let be the
vibration-number of an elementary light-generator, measured by a del-
icate clock at the same place. Let us imagine them both at a place on
the surface of the Sun (where our is located). Of the light there
emitted, a portion reaches the Earth where we measure the fre-
quency of the arriving light with a clock U in all respects resembling
the one just mentioned. Then by (2a),

where is the (negative) difference of gravitational potential between
the surface of the Sun and the Earth. Thus according to our view the
spectral lines of sunlight, as compared with the corresponding spec-
tral lines of terrestrial sources of light, must be somewhat displaced
toward the red, in fact by the relative amount

If the conditions under which the solar bands arise were exactly
known, this shifting would be susceptible of measurement. But as
other influences (pressure, temperature) affect the position of the cen-
tres of the spectral lines, it is difficult to discover whether the inferred
influence of the gravitational potential really exists.*
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*L. F. Jewell (Journ. de Phys., 6, 1897, p. 84) and particularly Ch. Fabry and H. Boisson (Comptes rendus, 148, 1909, pp. 688–690)
have actually found such displacements of fine spectral lines toward the red end of the spectrum, of the order of magnitude here calcu-
lated, but have ascribed them to an effect of pressure in the absorbing layer.



On a superficial consideration equation (2), or (2a), respectively, seems
to assert an absurdity. If there is constant transmission of light from

to how can any other number of periods per second arrive in
than is emitted in But the answer is simple. We cannot regard
or respectively simply as frequencies (as the number of periods

per second) since we have not yet determined the time in system K.
What denotes is the number of periods with reference to the time-
unit of the clock U in while denotes the number of periods per
second with reference to the identical clock in Nothing compels
us to assume that the clocks U in different gravitation potentials must
be regarded as going at the same rate. On the contrary, we must cer-
tainly define the time in K in such a way that the number of wave
crests and troughs between and is independent of the absolute
value of time; for the process under observation is by nature a sta-
tionary one. If we did not satisfy this condition, we should arrive at
a definition of time by the application of which time would merge
explicitly into the laws of nature, and this would certainly be unnat-
ural and unpractical. Therefore the two clocks in and do not
both give the “time” correctly. If we measure time in with the lock
U, then we must measure time in with a clock which goes

times more slowly than the clock U when compared with
U at one and the same place. For when measured by such a clock the
frequency of the ray of light which is considered above is at its emis-
sion in 

and is therefore, by (2a), equal to the frequency of the same ray of
light on its arrival in 

This has a consequence which is of fundamental importance for
our theory. For if we measure the velocity of light at different places
in the accelerated, gravitation-free system employing clocks U of
identical constitution, we obtain the same magnitude at all these
places. The same holds good, by our fundamental assumption, for
the system K as well. But from what has just been said we must use
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clocks of unlike constitution, for measuring time at places with dif-
fering gravitation potential. For measuring time at a place which,
relatively to the origin of the co-ordinates, has the gravitation poten-
tial we must employ a clock which—when removed to the ori-
gin of co-ordinates—goes times more slowly than the
clock used for measuring time at the origin of co-ordinates. If we call
the velocity of light at the origin of co-ordinates then the veloc-
ity of light c at a place with the gravitation potential will be given
by the relation

. . . . (3)

The principle of the constancy of the velocity of light holds good
according to this theory in a different form from that which usually
underlies the ordinary theory of relativity.

§ 4. BENDING OF LIGHT-RAYS IN THE GRAVITATIONAL FIELD

From the proposition which has just been proved, that the velocity of
light in the gravitational field is a function of the place, we may eas-
ily infer, by means of Huyghens’s principle, that light-rays propagated
across a gravitational field undergo deflexion. For let E be a wave front
of a plane light-wave at the time t, and let and be two points
in that plane at unit distance from each other. and lie in theP2P1

P2P1

c � c0 a1 �
£
c2 b

£
c0,

11 � £�c22

£,
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FIG. 2.

plane of the paper, which is chosen so that the differential coefficient
of taken in the direction of the normal to the plane, vanishes, and
therefore also that of c. We obtain the corresponding wave front at
time or, rather, its line of section with the plane of the paper,
by describing circles round the points and with radii and

respectively, where and denote the velocity of light at the
points and respectively, and by drawing the tangent to theseP2P1

c2c1c2dt
c1dtP2P1

t � dt,

£,



circles. The angle through which the light-ray is deflected in the path
cdt is therefore

if we calculate the angle positively when the ray is bent toward the
side of increasing The angle of deflexion per unit of path of the
light-ray is thus

Finally, we obtain for the deflexion which a light-ray experiences
toward the side on any path (s) the expression

. . . . (4)

We might have obtained the same result by directly considering the
propagation of a ray of light in the uniformly accelerated system 
and transferring the result to the system K, and thence to the case of
a gravitational field of any form.

By equation (4) a ray of light passing along by a heavenly body
suffers a deflexion to the side of the diminishing gravitational poten-
tial, that is, on the side directed toward the heavenly body, of the
magnitude

where k denotes the constant of gravitation, M
the mass of the heavenly body, the distance of
the ray from the centre of the body. A ray of
light going past the Sun would accordingly
undergo deflexion to the amount of 
seconds of arc. The angular distance of the star
from the centre of the Sun appears to be
increased by this amount. As the fixed stars in
the parts of the sky near the Sun are visible dur-
ing total eclipses of the Sun, this consequence of
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the theory may be compared with experience. With the planet
Jupiter the displacement to be expected reaches to about of the
amount given. It would be a most desirable thing if astronomers
would take up the question here raised. For apart from any theory
there is the question whether it is possible with the equipment at
present available to detect an influence of gravitational fields on the
propagation of light.

1
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THE FOUNDATION OF

THE GENERAL THEORY

OF RELATIVITY
BY

A. EINSTEIN

Translated from “Die Grundlage der allgemeinen Relativitätstheorie,”
Annalen der Physik, 49, 1916.

A. FUNDAMENTAL CONSIDERATIONS ON
THE POSTULATE OF RELATIVITY

§ 1. OBSERVATIONS ON THE SPECIAL THEORY OF RELATIVITY

The special theory of relativity is based on the following postulate,
which is also satisfied by the mechanics of Galileo and Newton.

If a system of co-ordinates K is chosen so that, in relation to it,
physical laws hold good in their simplest form, the same laws also hold
good in relation to any other system of co-ordinates K¿ moving in uni-
form translation relatively to K. This postulate we call the “special prin-
ciple of relativity.” The word “special” is meant to intimate that the
principle is restricted to the case when K¿ has a motion of uniform
translation relatively to K, but that the equivalence of and K does
not extend to the case of non-uniform motion of relatively to K.

Thus the special theory of relativity does not depart from classi-
cal mechanics through the postulate of relativity, but through the pos-
tulate of the constancy of the velocity of light in vacuo, from which,
in combination with the special principle of relativity, there follow, in
the well-known way, the relativity of simultaneity, the Lorentzian
transformation, and the related laws for the behaviour of moving bod-
ies and clocks.

The modification to which the special theory of relativity has sub-
jected the theory of space and time is indeed far-reaching, but one
important point has remained unaffected.

K¿
K¿
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For the laws of geometry, even according to the special theory of
relativity, are to be interpreted directly as laws relating to the pos-
sible relative positions of solid bodies at rest; and, in a more gen-
eral way, the laws of kinematics are to be interpreted as laws which
describe the relations of measuring bodies and clocks. To two
selected material points of a stationary rigid body there always
corresponds a distance of quite definite length, which is independ-
ent of the locality and orientation of the body, and is also inde-
pendent of the time. To two selected positions of the hands of a
clock at rest relatively to the privileged system of reference there
always corresponds an interval of time of a definite length, which is
independent of place and time. We shall soon see that the general
theory of relativity cannot adhere to this simple physical interpre-
tation of space and time.

§ 2. THE NEED FOR AN EXTENSION OF THE POSTULATE

OF RELATIVITY

In classical mechanics, and no less in the special theory of relativity,
there is an inherent epistemological defect which was, perhaps for the
first time, clearly pointed out by Ernst Mach. We will elucidate it by
the following example:—Two fluid bodies of the same size and nature
hover freely in space at so great a distance from each other and from
all other masses that only those gravitational forces need be taken into
account which arise from the interaction of different parts of the same
body. Let the distance between the two bodies be invariable, and in
neither of the bodies let there be any relative movements of the parts
with respect to one another. But let either mass, as judged by an
observer at rest relatively to the other mass, rotate with constant angu-
lar velocity about the line joining the masses. This is a verifiable rel-
ative motion of the two bodies. Now let us imagine that each of the
bodies has been surveyed by means of measuring instruments at rest
relatively to itself, and let the surface of prove to be a sphere, and
that of an ellipsoid of revolution. Thereupon we put the question—
What is the reason for this difference in the two bodies? No answer

S2

S1
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can be admitted as epistemologically satisfactory,* unless the reason
given is an observable fact of experience. The law of causality has not
the significance of a statement as to the world of experience, except
when observable facts ultimately appear as causes and effects.

Newtonian mechanics does not give a satisfactory answer to this
question. It pronounces as follows:—The laws of mechanics apply to
the space in respect to which the body is at rest, but not to the
space in respect to which the body is at rest. But the privileged
space of Galileo, thus introduced, is a merely factitious cause, and not
a thing that can be observed. It is therefore clear that Newton’s mechanics
does not really satisfy the requirement of causality in the case under con-
sideration, but only apparently does so, since it makes the factitious cause

responsible for the observable difference in the bodies and 
The only satisfactory answer must be that the physical system con-

sisting of and reveals within itself no imaginable cause to which
the differing behaviour of and can be referred. The cause must
therefore lie outside this system. We have to take it that the general laws
of motion, which in particular determine the shapes of and must
be such that the mechanical behaviour of and is partly condi-
tioned, in quite essential respects, by distant masses which we have not
included in the system under consideration. These distant masses and
their motions relative to and must then be regarded as the seat
of the causes (which must be susceptible to observation) of the differ-
ent behaviour of our two bodies and They take over the rôle of
the factitious cause Of all imaginable spaces etc., in any
kind of motion relatively to one another, there is none which we may
look upon as privileged a priori without reviving the above-mentioned
epistemological objection. The laws of physics must be of such a nature
that they apply to systems of reference in any hind of motion. Along this
road we arrive at an extension of the postulate of relativity.

In addition to this weighty argument from the theory of knowl-
edge, there is a well-known physical fact which favours an extension
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with other experiences.



of the theory of relativity. Let K be a Galilean system of reference, i.e.
a system relatively to which (at least in the four-dimensional region
under consideration) a mass, sufficiently distant from other masses, is
moving with uniform motion in a straight line. Let K¿ be a second
system of reference which is moving relatively to K in uniformly accel-
erated translation. Then, relatively to a mass sufficiently distant
from other masses would have an accelerated motion such that its
acceleration and direction of acceleration are independent of the mate-
rial composition and physical state of the mass.

Does this permit an observer at rest relatively to to infer that
he is on a “really” accelerated system of reference? The answer is in
the negative; for the above-mentioned relation of freely movable
masses to may be interpreted equally well in the following way.
The system of reference is unaccelerated, but the space-time territory
in question is under the sway of a gravitational field, which generates the
accelerated motion of the bodies relatively to 

This view is made possible for us by the teaching of experience as
to the existence of a field of force, namely, the gravitational field,
which possesses the remarkable property of imparting the same accel-
eration to all bodies.* The mechanical behaviour of bodies relatively
to is the same as presents itself to experience in the case of systems
which we are wont to regard as “stationary” or as “privileged.” There-
fore, from the physical standpoint, the assumption readily suggests
itself that the systems K and may both with equal right be looked
upon as “stationary,” that is to say, they have an equal title as systems
of reference for the physical description of phenomena.

It will be seen from these reflexions that in pursuing the general
theory of relativity we shall be led to a theory of gravitation, since we
are able to “produce” a gravitational field merely by changing the sys-
tem of co-ordinates. It will also be obvious that the principle of the
constancy of the velocity of light in vacuo must be modified, since we
easily recognize that the path of a ray of light with respect to mustK¿

K¿

K¿

K¿.

K¿
K¿

K¿

K¿,
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*Eötvös has proved experimentally that the gravitational field has this property in great accuracy.



in general be curvilinear, if with respect to K light is propagated in a
straight line with a definite constant velocity.

§ 3. THE SPACE-TIME CONTINUUM. REQUIREMENT

OF GENERAL CO-VARIANCE FOR THE EQUATIONS

EXPRESSING GENERAL LAWS OF NATURE

In classical mechanics, as well as in the special theory of relativity, the
co-ordinates of space and time have a direct physical meaning. To say
that a point-event has the coordinate means that the projection of
the point-event on the axis of determined by rigid rods and in accor-
dance with the rules of Euclidean geometry, is obtained by measuring off
a given rod (the unit of length) times from the origin of coordinates
along the axis of To say that a point-event has the co-ordinate

means that a standard clock, made to measure time in a definite
unit period, and which is stationary relatively to the system of co-
ordinates and practically coincident in space with the point-event,* will
have measured off periods at the occurrence of the event.

This view of space and time has always been in the minds of physi-
cists, even if, as a rule, they have been unconscious of it. This is clear
from the part which these concepts play in physical measurements; it
must also have underlain the reader’s reflexions on the preceding para-
graph (§ 2) for him to connect any meaning with what he there read.
But we shall now show that we must put it aside and replace it by a
more general view, in order to be able to carry through the postulate
of general relativity, if the special theory of relativity applies to the
special case of the absence of a gravitational field.

In a space which is free of gravitational fields we introduce a
Galilean system of reference K (x, y, z, t), and also a system of co-
ordinates in uniform rotation relatively to K. Let the
origins of both systems, as well as their axes of Z, permanently coin-
cide. We shall show that for a space-time measurement in the system

the above definition of the physical meaning of lengths and timesK¿

K¿ 1x¿, y¿, z¿, t¿ 2

x4 � t
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*We assume the possibility of verifying “simultaneity” for events immediately proximate in space, or—to speak more precisely—for
immediate proximity or coincidence in space-time, without giving a definition of this fundamental concept.



cannot be maintained. For reasons of symmetry it is clear that a cir-
cle around the origin in the X, Y plane of K may at the same time be
regarded as a circle in the plane of We suppose that the cir-
cumference and diameter of this circle have been measured with a unit
measure infinitely small compared with the radius, and that we have
the quotient of the two results. If this experiment were performed with
a measuring-rod at rest relatively to the Galilean system K, the quo-
tient would be With a measuring-rod at rest relatively to K¿, the
quotient would be greater than This is readily understood if we
envisage the whole process of measuring from the “stationary” system
K, and take into consideration that the measuring-rod applied to the
periphery undergoes a Lorentzian contraction, while the one applied
along the radius does not. Hence Euclidean geometry does not apply
to The notion of co-ordinates defined above, which pre-supposes
the validity of Euclidean geometry, therefore breaks down in relation
to the System So, too, we are unable to introduce a time corre-
sponding to physical requirements in indicated by clocks at rest
relatively to To convince ourselves of this impossibility, let us imag-
ine two clocks of identical constitution placed, one at the origin of
co-ordinates, and the other at the circumference of the circle, and both
envisaged from the “stationary” system K. By a familiar result of the
special theory of relativity, the clock at the circumference—judged
from K—goes more slowly than the other, because the former is in
motion and the latter at rest. An observer at the common origin of
co-ordinates, capable of observing the clock at the circumference by
means of light, would therefore see it lagging behind the clock beside
him. As he will not make up his mind to let the velocity of light along
the path in question depend explicitly on the time, he will interpret
his observations as showing that the clock at the circumference “really”
goes more slowly than the clock at the origin. So he will be obliged
to define time in such a way that the rate of a clock depends upon
where the clock may be.

We therefore reach this result:—In the general theory of relativ-
ity, space and time cannot be defined in such a way that differences
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of the spatial co-ordinates can be directly measured by the unit measuring-
rod, or differences in the time co-ordinate by a standard clock.

The method hitherto employed for laying co-ordinates into the
space-time continuum in a definite manner thus breaks down, and
there seems to be no other way which would allow us to adapt sys-
tems of co-ordinates to the four-dimensional universe so that we might
expect from their application a particularly simple formulation of
the laws of nature. So there is nothing for it but to regard all imagi-
nable systems of co-ordinates, on principle, as equally suitable for the
description of nature. This comes to requiring that:—

The general laws of nature are to be expressed by equations which
hold good for all systems of co-ordinates, that is, are co-variant with respect
to any substitutions whatever (generally co-variant).

It is clear that a physical theory which satisfies this postulate will
also be suitable for the general postulate of relativity. For the sum of
all substitutions in any case includes those which correspond to all rel-
ative motions of three-dimensional systems of co-ordinates. That this
requirement of general co-variance, which takes away from space and
time the last remnant of physical objectivity, is a natural one, will be
seen from the following reflexion. All our space-time verifications
invariably amount to a determination of space-time coincidences. If,
for example, events consisted merely in the motion of material points,
then ultimately nothing would be observable but the meetings of two
or more of these points. Moreover, the results of our measurings are
nothing but verifications of such meetings of the material points of
our measuring instruments with other material points, coincidences
between the hands of a clock and points on the clock dial, and
observed point-events happening at the same place at the same time.

The introduction of a system of reference serves no other purpose
than to facilitate the description of the totality of such coincidences.
We allot to the universe four space-time variables in such
a way that for every point-event there is a corresponding system of
values of the variables To two coincident point-events there
corresponds one system of values of the variables i.e. coincidencex1 . . . x4,

x1 . . . x4.

x1, x2, x3, x4
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is characterized by the identity of the co-ordinates. If, in place of the
variables we introduce functions of them, as a
new system of co-ordinates, so that the systems of values are made to
correspond to one another without ambiguity, the equality of all four
co-ordinates in the new system will also serve as an expression for the
space-time coincidence of the two point-events. As all our physical
experience can be ultimately reduced to such coincidences, there is no
immediate reason for preferring certain systems of co-ordinates to oth-
ers, that is to say, we arrive at the requirement of general co-variance.

§ 4. THE RELATION OF THE FOUR CO-ORDINATES

TO MEASUREMENT IN SPACE AND TIME

It is not my purpose in this discussion to represent the general theory
of relativity as a system that is as simple and logical as possible, and
with the minimum number of axioms; but my main object is to
develop this theory in such a way that the reader will feel that the path
we have entered upon is psychologically the natural one, and that the
underlying assumptions will seem to have the highest possible degree
of security. With this aim in view let it now be granted that:—

For infinitely small four-dimensional regions the theory of rela-
tivity in the restricted sense is appropriate, if the coordinates are suit-
ably chosen.

For this purpose we must choose the acceleration of the infinitely
small (“local”) system of co-ordinates so that no gravitational field
occurs; this is possible for an infinitely small region. Let 
be the co-ordinates of space, and the appertaining co-ordinate of
time measured in the appropriate unit.* If a rigid rod is imagined to
be given as the unit measure, the co-ordinates, with a given orienta-
tion of the system of co-ordinates, have a direct physical meaning in
the sense of the special theory of relativity. By the special theory of
relativity the expression

. . . . (1)ds2 � �d X2
1 � d X2

2 � d X2
3 � d X2

4

X4
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*The unit of time is to be chosen so that the velocity of light in vacuo as measured in the “local” system of co-ordinates is to be equal
to unity.



then has a value which is independent of the orientation of the local
system of co-ordinates, and is ascertainable by measurements of space
and time. The magnitude of the linear element pertaining to points
of the four-dimensional continuum in infinite proximity, we call ds.
If the ds belonging to the element is positive, we follow
Minkowski in calling it time-like; if it is negative, we call it space-like.

To the “linear element” in question, or to the two infinitely prox-
imate point-events, there will also correspond definite differentials

of the four-dimensional co-ordinates of any chosen sys-
tem of reference. If this system, as well as the “local” system, is given
for the region under consideration, the will allow themselves to
be represented here by definite linear homogeneous expressions of
the —

. . . . . (2)

Inserting these expressions in (1), we obtain

. . . . . (3)

where the will be functions of the These can no longer be
dependent on the orientation and the state of motion of the “local”
system of co-ordinates, for is a quantity ascertainable by rod-clock
measurement of point-events infinitely proximate in space-time, and
defined independently of any particular choice of co-ordinates. The

are to be chosen here so that the summation is to
extend over all values of and so that the sum consists of 
terms, of which twelve are equal in pairs.

The case of the ordinary theory of relativity arises out of the case
here considered, if it is possible, by reason of the particular relations
of the in a finite region, to choose the system of reference in the
finite region in such a way that the assume the constant values

. . . (4)
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We shall find hereafter that the choice of such co-ordinates is, in gen-
eral, not possible for a finite region.

From the considerations of § 2 and § 3 it follows that the quantities
are to be regarded from the physical standpoint as the quantities

which describe the gravitational field in relation to the chosen system
of reference. For, if we now assume the special theory of relativity to
apply to a certain four-dimensional region with the co-ordinates prop-
erly chosen, then the have the values given in (4). A free material
point then moves, relatively to this system, with uniform motion in a
straight line. Then if we introduce new space-time co-ordinates

by means of any substitution we choose, the in this
new system will no longer be constants, but functions of space and time.
At the same time the motion of the free material point will present itself
in the new co-ordinates as a curvilinear non-uniform motion, and the
law of this motion will be independent of the nature of the moving par-
ticle. We shall therefore interpret this motion as a motion under the
influence of a gravitational field. We thus find the occurrence of a grav-
itational field connected with a space-time variability of the So, too,
in the general case, when we are no longer able by a suitable choice of
co-ordinates to apply the special theory of relativity to a finite region,
we shall hold fast to the view that the describe the gravitational field.

Thus, according to the general theory of relativity, gravitation occu-
pies an exceptional position with regard to other forces, particularly the
electromagnetic forces, since the ten functions representing the gravi-
tational field at the same time define the metrical properties of the
space measured.

B. MATHEMATICAL AIDS TO 
THE FORMULATION OF GENERALLY

COVARIANT EQUATIONS

Having seen in the foregoing that the general postulate of relativity
leads to the requirement that the equations of physics shall be covari-
ant in the face of any substitution of the co-ordinates wex1 . . . x4,

gst
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gst

gts
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have to consider how such generally covariant equations can be found.
We now turn to this purely mathematical task, and we shall find that
in its solution a fundamental rôle is played by the invariant ds given
in equation (3), which, borrowing from Gauss’s theory of surfaces, we
have called the “linear element.”

The fundamental idea of this general theory of covariants is the
following:—Let certain things (“tensors”) be defined with respect to any
system of co-ordinates by a number of functions of the co-ordinates,
called the “components” of the tensor. There are then certain rules by
which these components can be calculated for a new system of co-
ordinates, if they are known for the original system of co-ordinates,
and if the transformation connecting the two systems is known. The
things hereafter called tensors are further characterized by the fact that
the equations of transformation for their components are linear and
homogeneous. Accordingly, all the components in the new system van-
ish, if they all vanish in the original system. If, therefore, a law of nature
is expressed by equating all the components of a tensor to zero, it is
generally covariant. By examining the laws of the formation of tensors,
we acquire the means of formulating generally covariant laws.

§ 5. CONTRAVARIANT AND COVARIANT FOUR-VECTORS

Contravariant Four-vectors.—The linear element is defined by the four
“components” for which the law of transformation is expressed
by the equation

. . . . (5)

The are expressed as linear and homogeneous functions of the
Hence we may look upon these co-ordinate differentials as the

components of a “tensor” of the particular kind which we call a con-
travariant four-vector. Any thing which is defined relatively to the sys-
tem of co-ordinates by four quantities and which is transformed
by the same law

. . . . (5a)A¿s � a
n

0x¿s
0xn

An,

An,

dxn.
dx¿s

dx¿s � a
n

0x¿s
0xn

dxn

dxn,
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we also call a contravariant four-vector. From (5a) it follows at once
that the sums are also components of a four-vector, if and

are such. Corresponding relations hold for all “tensors” subsequently
to be introduced. (Rule for the addition and subtraction of tensors.)

Covariant Four-vectors.—We call four quantities the compo-
nents of a covariant four-vector, if for any arbitrary choice of the con-
travariant four-vector 

. . . (6)

The law of transformation of a covariant four-vector follows from this
definition. For if we replace on the right-hand side of the equation

by the expression resulting from the inversion of (5a),

we obtain

Since this equation is true for arbitrary values of the it follows
that the law of transformation is

. . . . (7)

Note on a Simplified Way of Writing the Expressions.—A glance at
the equations of this paragraph shows that there is always a sum-
mation with respect to the indices which occur twice under a sign
of summation (e.g. the index in (5)), and only with respect to
indices which occur twice. It is therefore possible, without loss of
clearness, to omit the sign of summation. In its place we introduce
the convention:—If an index occurs twice in one term of an expres-
sion, it is always to be summed unless the contrary is expressly
stated.

The difference between covariant and contravariant four-vectors
lies in the law of transformation ((7) or (5) respectively). Both forms

n

A¿s � a
n

0xn
0x¿s

 An

B¿s,

a
s

B¿sa
n

0xn
0x¿s

An � a
s

B¿sA¿s.

a
s

0xn
0x¿s

B¿s,

a
s

A¿sB¿s � a
n

AnB
n

Bn

a
n

AnB
n � Invariant

Bn

An

Bs
AsAs � Bs
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are tensors in the sense of the general remark above. Therein lies their
importance. Following Ricci and Levi-Civita, we denote the con-
travariant character by placing the index above, the covariant by plac-
ing it below.

§ 6. TENSORS OF THE SECOND AND HIGHER RANKS

Contravariant Tensors.—If we form all the sixteen products of the
components and of two contravariant four-vectors

. . . . (8)
then by (8) and (5a) satisfies the law of transformation

. . . . (9 )

We call a thing which is described relatively to any system of
reference by sixteen quantities; satisfying the law of transformation
(9), a contravariant tensor of the second rank. Not every such ten-
sor allows itself to be formed in accordance with (8) from two four-
vectors, but it is easily shown that any given sixteen can be
represented as the sums of the of four appropriately selected
pairs of four-vectors. Hence we can prove nearly all the laws which
apply to the tensor of the second rank defined by (9) in the sim-
plest manner by demonstrating them for the special tensors of the
type (8).

Contravariant Tensors of Any Bank.—It is clear that, on the
lines of (8) and (9), contravariant tensors of the third and higher
ranks may also be defined with components, and so on. In the
same way it follows from (8) and (9) that the contravariant four-
vector may be taken in this sense as a contravariant tensor of the
first rank.

Covariant Tensors.—On the other hand, if we take the sixteen
products of two covariant four-vectors and 

. . . . (10)

the law of transformation for these is

. . . . (11)A¿st �
0xm
0x¿s

0xn
0x¿t

Amn

Amn � AmBn,

Bn,AmAmn
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AmBn
Amn

A¿st �
0x ¿s
0xm

 
0x ¿t
0xn

Amn

Amn
Amn � AmBn

BnAm
Amn
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This law of transformation defines the covariant tensor of the sec-
ond rank. All our previous remarks on contravariant tensors apply
equally to covariant tensors.

NOTE.—It is convenient to treat the scalar (or invariant) both as
a contravariant and a covariant tensor of zero rank.

Mixed Tensors.—We may also define a tensor of the second rank
of the type

. . . . (12)

which is covariant with respect to the index and contravariant with
respect to the index Its law of transformation is

. . . . (13)

Naturally there are mixed tensors with any number of indices of
covariant character, and any number of indices of contravariant char-
acter. Covariant and contravariant tensors may be looked upon as spe-
cial cases of mixed tensors.

Symmetrical Tensors.—A contravariant, or a covariant tensor, of the
second or higher rank is said to be symmetrical if two components,
which are obtained the one from the other by the interchange of two
indices, are equal. The tensor or the tensor is thus sym-
metrical if for any combination of the indices 

. . . . .  (14)

or respectively,

. . . . .  (14a)
It has to be proved that the symmetry thus defined is a property

which is independent of the system of reference. It follows in fact from
(9), when (14) is taken into consideration, that

The last equation but one depends upon the interchange of the sum-
mation indices and i.e. merely on a change of notation.

Antisymmetrical Tensors.—A contravariant or a covariant tensor of
the second, third, or fourth rank is said to be antisymmetrical if two

n,m

A¿st �
0x¿s
0xm

0x¿t
0xn

Amn �
0x¿s
0xm

 
0x¿t
0xn

Anm �
0x¿s
0xn

 
0x¿t
0xm

Amn � A¿ts.

Amn � Anm.

Amn � Anm,

m, n,
Amn,Amn,

A¿ts �
0x¿t
0xn

 
0xm
0x¿s

Anm

n.
m,

Anm � AmB
n
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components, which are obtained the one from the other by the inter-
change of two indices, are equal and of opposite sign. The tensor 
or the tensor is therefore antisymmetrical, if always

. . . . . (15)
or respectively,

. . . . . (15a)
Of the sixteen components the four components vanish;

the rest are equal and of opposite sign in pairs, so that there are only
six components numerically different (a six-vector). Similarly we see
that the antisymmetrical tensor of the third rank has only four
numerically different components, while the antisymmetrical tensor

has only one. There are no antisymmetrical tensors of higher rank
than the fourth in a continuum of four dimensions.

§ 7. MULTIPLICATION OF TENSORS

Outer Multiplication of Tensors.—We obtain from the components of
a tensor of rank n and of a tensor of rank m the components of a ten-
sor of rank by multiplying each component of the one tensor
by each component of the other. Thus, for example, the tensors T arise
out of the tensors A and B of different kinds,

The proof of the tensor character of T is given directly by the rep-
resentations (8), (10), (12), or by the laws of transformation (9), (11),
(13). The equations (8), (10), (12) are themselves examples of outer
multiplication of tensors of the first rank.

“Contraction” of a Mixed Tensor.—From any mixed tensor we may
form a tensor whose rank is less by two, by equating an index of covari-
ant with one of contravariant character, and summing with respect to
this index (“contraction”). Thus, for example, from the mixed tensor
of the fourth rank we obtain the mixed tensor of the second rank,

Atn � Amtmn a�a
m

Amtmnb,

Astmn,

 Tstmn � AmnB
sn.

 Tmnst � AmnBst,
 Tmns � AmnBs,

n � m

Amnst

Amns

AmmAmn,
Amn � �Anm

Amn � �Anm,
Amn,

Amn,
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and from this, by a second contraction, the tensor of zero rank,

The proof that the result of contraction really possesses the ten-
sor character is given either by the representation of a tensor accord-
ing to the generalization of (12) in combination with (6), or by the
generalization of (13).

Inner and Mixed Multiplication of Tensors.—These consist in a
combination of outer multiplication with contraction.

Examples.—From the covariant tensor of the second rank and
the contravariant tensor of the first rank we form by outer multi-
plication the mixed tensor

On contraction with respect to the indices and we obtain the
covariant four-vector

This we call the inner product of the tensors and Analogously
we form from the tensors and by outer multiplication and
double contraction, the inner product By outer multiplica-
tion and one contraction, we obtain from and the mixed ten-
sor of the second rank This operation may be aptly
characterized as a mixed one, being “outer” with respect to the indices

and and “inner” with respect to the indices and 
We now prove a proposition which is often useful as evidence of

tensor character. From what has just been explained, is a scalar
if and are tensors. But we may also make the following asser-
tion: If is a scalar for any choice of the tensor then has
tensor character. For, by hypothesis, for any substitution,

But by an inversion of (9)

This, inserted in the above equation, gives

aA¿st �
0xm
0x¿s

 
0xn
0x¿t

 Amnb B¿st � 0.

Bmn �
0xm
0x¿s

 
0xn
0x¿t

B¿st.

A¿stB¿st � AmnBmn.

AmnBmn,AmnB
mn

BstAmn

AmnB
mn

s.nt,m

Dtm � AmnB
nt.

BstAmn

AmnB
mn.

Bst,Amn

Bs.Amn

Dm � Dnmn � AmnB
n.

s,n

Dsmn � AmnB
s.

Bs
Amn

A � Ann � Amnmn.
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This can only be satisfied for arbitrary values of if the bracket
vanishes. The result then follows by equation (11). This rule applies
correspondingly to tensors of any rank and character, and the proof is
analogous in all cases.

The rule may also be demonstrated in this form: If and are
any vectors, and if, for all values of these, the inner product 
is a scalar, then is a covariant tensor. This latter proposition also
holds good even if only the more special assertion is correct, that with
any choice of the four-vector the inner product is a scalar,
if in addition it is known that satisfies the condition of symme-
try For by the method given above we prove the tensor
character of and from this the tensor character of 
follows on account of symmetry. This also can be easily generalized to
the case of covariant and contravariant tensors of any rank.

Finally, there follows from what has been proved, this law, which
may also be generalized for any tensors: If for any choice of the four-
vector the quantities form a tensor of the first rank, then

is a tensor of the second rank. For, if is any four-vector, then
on account of the tensor character of the inner product

is a scalar for any choice of the two four-vectors and 
From which the proposition follows.

§ 8. SOME ASPECTS OF THE FUNDAMENTAL TENSOR

The Covariant Fundamental Tensor.—In the invariant expression for
the square of the linear element,

the part played by the is that of a contravariant vector which may
be chosen at will. Since further, it follows from the con-
siderations of the preceding paragraph that is a covariant tensor of
the second rank. We call it the “fundamental tensor.” In what follows
we deduce some properties of this tensor which, it is true, apply to
any tensor of the second rank. But as the fundamental tensor plays a
special part in our theory, which has its physical basis in the peculiar

gmn

gmn � gnm,
dxm

ds2 � gmndxmdxn,

gmn

Cm.BnAmnB
nCm

AmnB
n,

CmAmn

AmnB
nBn

Amn1Amn � Anm2,
Amn � Anm.

Amn

AmnB
mBnBm

Amn

AmnB
mCn

CnBm

B¿st
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effects of gravitation, it so happens that the relations to be developed
are of importance to us only in the case of the fundamental tensor.

The Contravariant Fundamental Tensor.—If in the determinant
formed by the elements we take the co-factor of each of the 
and divide it by the determinant we obtain certain quanti-
ties which, as we shall demonstrate, form a contravariant
tensor.

By a known property of determinants
. . . . (16)

where the symbol denotes 1 or 0, according as or 
Instead of the above expression for we may thus write

or, by (16)

But, by the multiplication rules of the preceding paragraphs, the quan-
tities

form a covariant four-vector, and in fact an arbitrary vector, since the
are arbitrary. By introducing this into our expression we obtain

Since this, with the arbitrary choice of the vector is a scalar, and
by its definition is symmetrical in the indices and it follows

from the results of the preceding paragraph that is a contravariant
tensor.

It further follows from (16) that is also a tensor, which we may
call the mixed fundamental tensor.

The Determinant of the Fundamental Tensor.—By the rule for the
multiplication of determinants

On the other hand

It therefore follows that
. . . . (17)� gmn� � � g mn� � 1

� gma g an � � �dnm � � 1.

� gma g an � � � gma � � � g an �.

dm

gst
t,sgst

djs,
ds2 � gstdjsdjt.

dxm

djs � gmsdxm

gms gnt g
stdxmdxn.

gmsd
s
n dxmdxn

ds2

m � n.m � ndnm

gmsg ns � dnm

g mn 1�g nm2
g � � gmn �,

gmngmn,
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The Volume Scalar.—We seek first the law of transformation of the
determinant In accordance with (11)

Hence, by a double application of the rule for the multiplication of
determinants, it follows that

or

On the other hand, the law of transformation of the element of
volume

is, in accordance with the theorem of Jacobi,

By multiplication of the last two equations, we obtain

. . . (18)

Instead of we introduce in what follows the quantity 
which is always real on account of the hyperbolic character of the
space-time continuum. The invariant is equal to the magni-
tude of the four-dimensional element of volume in the “local” system
of reference, as measured with rigid rods and clocks in the sense of
the special theory of relativity.

Note on the Character of the Space-time Continuum.—Our assump-
tion that the special theory of relativity can always be applied to an
infinitely small region, implies that can always be expressed in
accordance with (1) by means of real quantities If we
denote by the “natural” element of volume 
then

. . . (18a)dt0 � 1�g dt

d X1, d X2, d X3, d X 4,dt0

d X1 . . . d X 4.
ds2

1�gdt

1�g, 1g,

1g ¿dt¿ � 1gdt

dt¿ � `
0x¿s
0xm
` dt.

dt � �dx1dx2dx3dx4

1g ¿ � `
0xm
0x¿s
` 1g.

g ¿ � `
0xm
0x¿s
` # `

0xn
0x¿t
` # 0 gmn 0 � `

0xm
0x¿s
`
2

g,

g¿ � `
0xm
0x¿s

 
0x
0x¿t

gmn ` .

g � � gmn �.
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If were to vanish at a point of the four-dimensional con-
tinuum, it would mean that at this point an infinitely small “natural”
volume would correspond to a finite volume in the co-ordinates. Let
us assume that this is never the case. Then g cannot change sign. We
will assume that, in the sense of the special theory of relativity, g always
has a finite negative value. This is a hypothesis as to the physical nature
of the continuum under consideration, and at the same time a con-
vention as to the choice of co-ordinates.

But if is always finite and positive, it is natural to settle the
choice of co-ordinates a posteriori in such a way that this quantity is
always equal to unity. We shall see later that by such a restriction of
the choice of co-ordinates it is possible to achieve an important sim-
plification of the laws of nature.

In place of (18), we then have simply from which, in
view of Jacobi’s theorem, it follows that

. . . . (19)

Thus, with this choice of co-ordinates, only substitutions for which
the determinant is unity are permissible.

But it would be erroneous to believe that this step indicates a par-
tial abandonment of the general postulate of relativity. We do not ask
“What are the laws of nature which are co-variant in face of all sub-
stitutions for which the determinant is unity?” but our question is
“What are the generally co-variant laws of nature?” It is not until we
have formulated these that we simplify their expression by a particu-
lar choice of the system of reference.

The Formation of New Tensors by Means of the Fundamental Tensor.
—Inner, outer, and mixed multiplication of a tensor by the funda-
mental tensor give tensors of different character and rank. For
example,

 A � gmnA
mn.

 Am � g msAs,

`
0 x¿s
0xm
` � 1

dt¿ � dt,

�g

1�g
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The following forms may be specially noted:—

(the “complements” of covariant and contravariant tensors respec-
tively), and

We call the reduced tensor associated with Similarly,

It may be noted that is nothing more than the complement of 
since

§ 9. THE EQUATION OF THE GEODETIC LINE. 
THE MOTION OF A PARTICLE

As the linear element ds is defined independently of the system of co-
ordinates, the line drawn between two points P and of the four-
dimensional continuum in such a way that is stationary—a geo-
detic line—has a meaning which also is independent of the choice of
co-ordinates. Its equation is

. . . .   (20)

Carrying out the variation in the usual way, we obtain from this equa-
tion four differential equations which define the geodetic line; this
operation will be inserted here for the sake of completeness. Let be
a function of the co-ordinates and let this define a family of sur-
faces which intersect the required geodetic line as well as all the lines
in immediate proximity to it which are drawn through the points P
and Any such line may then be supposed to be given by express-
ing its co-ordinates as functions of Let the symbol indicate
the transition from a point of the required geodetic to the point

dl.xn

P¿.

xn,
l

d�
P¿

P

ds � 0

�ds
P¿

g magnbgab � g madna � g mn.

gmn,g mn
Bmn � g mngabAab.

Amn.Bmn

Bmn � gmn g abAab.

 Amn � gma gnbAab
 Amn � g mag nbAab,
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corresponding to the same on a neighbouring line. Then for (20)
we may substitute

. . . . (20a)

But since

and

we obtain from (20a), after a partial integration,

where

. (20b)

Since the values of are arbitrary, it follows from this that
. . . . (20c)

are the equations of the geodetic line.
If ds does not vanish along the geodetic line we may choose the

“length of the arc” s, measured along the geodetic line, for the param-
eter Then and in place of (20c) we obtain

or, by a mere change of notation,

. . (20d)

where, following Christoffel, we have written

. . . (21)3mn, s 4 �
1

2
a

0gms
0xn

�
0gns
0xm

�
0gmn
0xs
b

gas
d 2xa
ds2 � 3mn, s 4

dxm
ds

 
dxn
ds

� 0

gmn
d 2xm
ds2 �
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0xs

 
dxs
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dxm
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�
1

2
 
0gmn
0xs

 
dxm
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dxn
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� 0

w � 1,l.

ks � 0
dxs

ks �
d

dl
e

gmn
w  

dxm
dl
f �

1
2w

 
0gmn
0xs

 
dxm
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dl
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l1

ksdxsdl � 0,

d a
dxn
dl
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d
dl
1dxn2,
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1
w e

1
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0gmn
0xs

 
dxm
dl

 
dxn
dl

 dxs � gmn 
dxm
dl
da

dxn
dl
b f ,

�
l2

l1

dwdl � 0

w2 � gmn
dxm
dl

 
dxn
dl

t
l
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Finally, if we multiply (20d) by (outer multiplication with respect
to inner with respect to we obtain the equations of the geo-
detic line in the form

. . .  (22)

where, following Christoffel, we have set
. . . (23)

§ 10. THE FORMATION OF TENSORS BY DIFFERENTIATION

With the help of the equation of the geodetic line we can now easily
deduce the laws by which new tensors can be formed from old by dif-
ferentiation. By this means we are able for the first time to formulate
generally covariant differential equations. We reach this goal by
repeated application of the following simple law:—

If in our continuum a curve is given, the points of which are
specified by the arcual distance s measured from a fixed point on the
curve, and if, further, is an invariant function of space, then 
is also an invariant. The proof lies in this, that ds is an invariant as
well as 
As

therefore

is also an invariant, and an invariant for all curves starting from a
point of the continuum, that is, for any choice of the vector 
Hence it immediately follows that

. . . .  (24)

is a covariant four-vector—the “gradient” of 
According to our rule, the differential quotient

x �
dc

ds

f.

Am �
0f
0xm

dxm.

c �
0f
dxm

 
dxm
ds

df

ds
�

0f
0xm

 
dxm
ds

df.

df�dsf

5mn, t6 � gta 3mn, a 4

d 2xt
ds2 � 5mn, t6 

dxm
ds

 
dxn
ds

� 0

s2,t,
gst
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taken on a curve, is similarly an invariant. Inserting the value of 
we obtain in the first place

The existence of a tensor cannot be deduced from this forthwith. But
if we may take the curve along which we have differentiated to be a
geodetic, we obtain on substitution for from (22),

Since we may interchange the order of the differentiations, and since
by (23) and (21) is symmetrical in and it follows that
the expression in brackets is symmetrical in and Since a geodetic
line can be drawn in any direction from a point of the continuum,
and therefore is a four-vector with the ratio of its components
arbitrary, it follows from the results of § 7 that

. . .  (25)

is a covariant tensor of the second rank. We have therefore come to
this result: from the covariant tensor of the first rank

we can, by differentiation, form a covariant tensor of the second rank

. . . (26)

We call the tensor the “extension” (covariant derivative) of the ten-
sor In the first place we can readily show that the operation leads
to a tensor, even if the vector cannot be represented as a gradient.
To see this, we first observe that

is a covariant vector, if and are scalars. The sum of four such terms

Sm � c 112
f0 112

0xm
� # � # � c142

0f142

0xm
,

fc

c 
0f
0xm

Am

Am.
Amn

Amn �
0Am
0xn

� 5mn, t6At

Am �
0f
0xm

Amn �
02f

0xm0xn
� 5mn, t6 

0f
0xt

dxm �ds

n.m

n,m5mn, t6

x � a
02f

0xm0xn
� 5mn, t6 

0f
0xt
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dxm
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x �
02f
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is also a covariant vector, if are scalars. But it is
clear that any covariant vector can be represented in the form For,
if is a vector whose components are any given functions of the 
we have only to put (in terms of the selected system of co-ordinates)

in order to ensure that shall be equal to 
Therefore, in order to demonstrate that is a tensor if any

covariant vector is inserted on the right-hand side for we only
need show that this is so for the vector But for this latter purpose
it is sufficient, as a glance at the right-hand side of (26) teaches us, to
furnish the proof for the case

Now the right-hand side of (25) multiplied by 

is a tensor. Similarly

being the outer product of two vectors, is a tensor. By addition, there
follows the tensor character of

As a glance at (26) will show, this completes the demonstration for
the vector

and consequently, from what has already been proved, for any vector 
By means of the extension of the vector, we may easily define the

“extension” of a covariant tensor of any rank. This operation is a gen-
eralization of the extension of a vector. We restrict ourselves to the

Am.

c
0f
0xm

0
0xn
ac

0f
0xm
b � 5mn, t6ac 

0f
0xt
b.

0c
0xm

 
0f
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� 5mn, t6c
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Am � c
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Sm.
Am,

Amn

Am.Sm

c142 � A4, f142 � x4,
c132 � A3, f132 � x3,
c122 � A2, f122 � x2,
c112 � A1, f112 � x1,

xn,Am

Sm.
c112, f112 . . . c142, f142
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case of a tensor of the second rank, since this suffices to give a clear
idea of the law of formation.

As has already been observed, any covariant tensor of the second
rank can be represented* as the sum of tensors of the type It
will therefore be sufficient to deduce the expression for the extension
of a tensor of this special type. By (26) the expressions

are tensors. On outer multiplication of the first by and of the sec-
ond by we obtain in each case a tensor of the third rank. By
adding these, we have the tensor of the third rank

. . . (27)

where we have put As the right-hand side of (27) is lin-
ear and homogeneous in the and their first derivatives, this law
of formation leads to a tensor, not only in the case of a tensor of the
type but also in the case of a sum of such tensors, i.e. in the
case of any covariant tensor of the second rank. We call the exten-
sion of the tensor 

It is clear that (26) and (24) concern only special cases of exten-
sion (the extension of the tensors of rank one and zero respectively).

In general, all special laws of formation of tensors are included in
(27) in combination with the multiplication of tensors.

§ 11. SOME CASES OF SPECIAL IMPORTANCE

The Fundamental Tensor.—We will first prove some lemmas which will
be useful hereafter. By the rule for the differentiation of determinants

. . (28)dg � g mngdgmn � �gmn gdg mn

Amn.
Amns

AmBn,

Amn

Amn � AmBn.

Amns �
0Amn
0xs

� 5sm, t6Atn � 5sn, t6Amt

Am,
Bn,

0Bn
0xs

� 5sn, t6Bt,

0Am
0xs

� 5sm, t6A t,

AmBn.
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*By outer multiplication of the vector with arbitrary components by the vector with components 1, 0, 0, 0, we pro-
duce a tensor with components

By the addition of four tensors of this type, we obtain the tensor with any assigned components.Amn

A11 A12 A13 A14

0 0 0 0
0 0 0 0

0 0 0 0

A11, A12, A13, A14



The last member is obtained from the last but one, if we bear in mind
that so that and consequently

From (28), it follows that

(29)

Further, from it follows on differentiation that

. . .  (30)

From these, by mixed multiplication by and respectively, and
a change of notation for the indices, we have

. . . (31)

and

. . . (32)

The relation (31) admits of a transformation, of which we also have
frequently to make use. From (21)

. . . (33)

Inserting this in the second formula of (31), we obtain, in view of
(23)

. . (34)

Substituting the right-hand side of (34) in (29), we have

. . (29a)

The “Divergence” of a Contravariant Vector.—If we take the inner
product of (26) by the contravariant fundamental tensor theg mn,

11�g
 
01�g

0xs
� 5ms, m6

0g mn

0xs
� �g mt5ts, n6 � g nt5ts, m6

0gab
0xs

� 3as, b 4 � 3bs, a 4

dgmn � �gmagnbdg ab

0gmn
0xs

� �gmagnb
0gab

0xs

s
dg mn � �g mag nbdgab
0g mn

0xs
� �g mag nb

0gab
0xs

s
gnlgst

gmsdgns � �gnsdgms

gms
0gns

0xl
� �gns

0gms
0xl

sgms gns � dnm,

11�g
 
01�g

0xs
� 1

2 
0  log 1�g2

0xs
� 1

2 g mn 
0gmn
0xs

� 1
2 gmn

0g mn

0xs
.

gmndg mn � g mndgmn � 0.

gmng
mn � 4,gmng

m¿n � dm¿
m ,
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right-hand side, after a transformation of the first term, assumes the
form

In accordance with (31) and (29), the last term of this expression may
be written

As the symbols of the indices of summation are immaterial, the first
two terms of this expression cancel the second of the one above. If we
then write so that like is an arbitrary vector, we
finally obtain

. . . (35)

This scalar is the divergence of the contravariant vector 
The “Curl” of a Covariant Vector.—The second term in (26) is

symmetrical in the indices and Therefore is a partic-
ularly simply constructed antisymmetrical tensor. We obtain

. . . (36)

Antisymmetrical Extension of a Six-vector.—Applying (27) to an
antisymmetrical tensor of the second rank forming in addition
the two equations which arise through cyclic permutations of the
indices, and adding these three equations, we obtain the tensor of the
third rank

(37)

which it is easy to prove is antisymmetrical.
The Divergence of a Six-vector.—Taking the mixed product of (27)

by we also obtain a tensor. The first term on the right-hand
side of (27) may be written in the form

0
0xs
1 g mag nbAmn2 � g ma

0g nb

0xs
Amn � g nb

0g ma

0xs
Amn.

g mag nb,

Bmns � Amns � Ansm � Asmn �
0Amn
0xs

�
0Ans
0xm

�
0Asm
0xn

Amn,

Bmn �
0Am
0xn

�
0An
0xm

Amn � Anmn.m

An.

£ �
11�g

 
0

0xn
11�g An2

AmAng mnAm � An,

1
2 

0gtn

0xn
At � 1

2 
0gtm

0xm
At �

11�g
 
01�g

0xa
g mnAt.

0
0xn
1 g mnAm2 � Am

0g mn

0xn
� 1

2 gta a
0gma
0xn

�
0gna
0xm

�
0gmn
0xa
b g mnAt.
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If we write for and for and in the
transformed first term replace

by their values as given by (34), there results from the right-hand side
of (27) an expression consisting of seven terms, of which four cancel,
and there remains

. . (38)

This is the expression for the extension of a contravariant tensor
of the second rank, and corresponding expressions for the exten-
sion of contravariant tensors of higher and lower rank may also be
formed.

We note that in an analogous way we may also form the exten-
sion of a mixed tensor:—

. . (39)

On contracting (38) with respect to the indices and (inner
multiplication by we obtain the vector

On account of the symmetry of with respect to the indices
and the third term on the right-hand side vanishes, if is,

as we will assume, an antisymmetrical tensor. The second term
allows itself to be transformed in accordance with (29a). Thus we
obtain

. . . (40)

This is the expression for the divergence of a contravariant six-
vector.

The Divergence of a Mixed Tensor of the Second Rank.—Contracting
(39) with respect to the indices and and taking (29a) intos,a

Aa �
11�g

 
0 11�gAab 2

0xb

Aabg,b

5bg, a6

Aa �
0Aab

0xb
� 5bg, b6Aag � 5bg, a6Agb.

dsb 2,
sb

Aams �
0Aam
0xs

� 5sm, t6Aat � 5st, a6Atm

Aabs �
0Aab

0xs
� 5sg, a6Agb � 5sg, b6Aag

0gnb

0xs
 and 

0g ma

0xs

g magnbAmn,Aabg mag nbAmnsAabs
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consideration, we obtain

. (41)

If we introduce the contravariant tensor in the last term,
it assumes the form

If, further, the tensor is symmetrical, this reduces to

Had we introduced, instead of the covariant tensor
which is also symmetrical, the last term, by virtue

of (31), would assume the form

In the case of symmetry in question, (41) may therefore be replaced
by the two forms

(41a)

(41b)

which we have to employ later on.

§ 12. THE RIEMANN-CHRISTOFFEL TENSOR

We now seek the tensor which can be obtained from the fundamen-
tal tensor alone, by differentiation. At first sight the solution seems
obvious. We place the fundamental tensor of the in (27) instead
of any given tensor and thus have a new tensor, namely, the
extension of the fundamental tensor. But we easily convince ourselves
that this extension vanishes identically. We reach our goal, however,
in the following way. In (27) place

Amn �
0Am
0xn

� 5mn, r6Ar,

Amn,
gmn

1�g Am �
011�gAsm2

0xs
� 1

2 
0grs

0xm
1�g Ars .

1�g Am �
0 11�g Asm2

0xs
� 1

2

0grs
0xm
1�g Ars .

1
21�g 

0grs

0xm
Ars.

Ars � gra gsbAab,
Ars,

�1
21�g 

0grs
0xm

Ars.

Ars
� 3sm, r 41�g Ars.

Ars � g rtAst

1�gAm �
0 11�gAsm2

0xs
� 5sm, t61�g Ast
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i.e. the extension of the four-vector Then (with a somewhat dif-
ferent naming of the indices) we get the tensor of the third rank

This expression suggests forming the tensor For, if we
do so, the following terms of the expression for cancel those of

the first, the fourth, and the member corresponding to the last
term in square brackets; because all these are symmetrical in and 
The same holds good for the sum of the second and third terms. Thus
we obtain

. . . (42)
where

(43)
The essential feature of the result is that on the right side of (42) the

occur alone, without their derivatives. From the tensor character
of in conjunction with the fact that is an arbitrary
vector, it follows, by reason of § 7, that is a tensor (the Riemann-
Christoffel tensor).

The mathematical importance of this tensor is as follows: If the
continuum is of such a nature that there is a co-ordinate system with
reference to which the are constants, then all the vanish. If
we choose any new system of coordinates in place of the original ones,
the referred thereto will not be constants, but in consequence of
its tensor nature, the transformed components of will still van-
ish in the new system. Thus the vanishing of the Riemann tensor is
a necessary condition that, by an appropriate choice of the system of
reference, the may be constants. In our problem this corresponds
to the case in which,* with a suitable choice of the system of reference,

gmn

Brmst

gmn

Brmstgmn

Brmst

ArAmst � Amts

Ar

� 5mt, a6 5as, r6

Brmst � �
0

0xt
5ms, r6 �

0
0xs
5mt, r6 � 5ms, a6 5at, r6

Amst � Amts � BrmstAr

t.s

Amts,
Amst

Amst � Amts.

� c�
0

0xt
5ms, r6 � 5mt, a65as, r6 � 5st, a65am, r6 dAr.

Amst �
02Am

0xs0xt
� 5ms, r6

0Ar
0xt

� 5mt, r6
0Ar
0xs

� 5st, r6
0Am
0xr

Am.
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the special theory of relativity holds good for a finite region of the
continuum.

Contracting (43) with respect to the indices and we obtain
the covariant tensor of second rank

where

(44)

Note on the Choice of Co-ordinates.—It has already been
observed in § 8, in connexion with equation (18a), that the choice
of co-ordinates may with advantage be made so that A
glance at the equations obtained in the last two sections shows that
by such a choice the laws of formation of tensors undergo an
important simplification. This applies particularly to the ten-
sor just developed, which plays a fundamental part in the theory
to be set forth. For this specialization of the choice of co-ordinates
brings about the vanishing of so that the tensor reduces
to 

On this account I shall hereafter give all relations in the simpli-
fied form which this specialization of the choice of co-ordinates brings
with it. It will then be an easy matter to revert to the generally covari-
ant equations, if this seems desirable in a special case.

C. THEORY OF THE GRAVITATIONAL FIELD

§ 13. EQUATIONS OF MOTION OF A MATERIAL POINT IN

THE GRAVITATIONAL FIELD. EXPRESSION FOR THE

FIELD-COMPONENTS OF GRAVITATION

A freely movable body not subjected to external forces moves, accord-
ing to the special theory of relativity, in a straight line and uniformly.
This is also the case, according to the general theory of relativity, for
a part of four-dimensional space in which the system of co-ordinates

Rmn.
GmnSmn,

Gmn,

1�g � 1.

Smn �
02

 log 1�g

0xm0xn
� 5mn, a6

0  log 1�g

0xa

Rmn � �
0

0xa
5mn, a6 � 5ma, b65nb, a6

Gmn � Brmnr � Rmn � Smn

rt
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may be, and is, so chosen that they have the special constant val-
ues given in (4).

If we consider precisely this movement from any chosen system
of co-ordinates the body, observed from moves, according to
the considerations in § 2, in a gravitational field. The law of motion
with respect to results without difficulty from the following con-
sideration. With respect to the law of motion corresponds to a
four-dimensional straight line, i.e. to a geodetic line. Now since the
geodetic line is defined independently of the system of reference, its
equations will also be the equation of motion of the material point
with respect to If we set

. . . . (45)
the equation of the motion of the point with respect to becomes

. . . (46)

We now make the assumption, which readily suggests itself, that this
covariant system of equations also defines the motion of the point in
the gravitational field in the case when there is no system of reference

with respect to which the special theory of relativity holds good
in a finite region. We have all the more justification for this assump-
tion as (46) contains only first derivatives of the between which
even in the special case of the existence of no relations subsist.*

If the vanish, then the point moves uniformly in a straight
line. These quantities therefore condition the deviation of the motion
from uniformity. They are the components of the gravitational field.

§ 14. THE FIELD EQUATIONS OF GRAVITATION

IN THE ABSENCE OF MATTER

We make a distinction hereafter between “gravitational field” and
“matter” in this way, that we denote everything but the gravitational
field as “matter.” Our use of the word therefore includes not only mat-
ter in the ordinary sense, but the electromagnetic field as well.

	tmn

K0,
gmn,

K0,

d 2xt
ds2 � 	tmn

dxm
ds

 
dxn
ds

K1,
	tmn � �5mn, t6

K1.

K0

K1

K1,K1,

K0,
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Our next task is to find the field equations of gravitation in the
absence of matter. Here we again apply the method employed in the pre-
ceding paragraph in formulating the equations of motion of the mate-
rial point. A special case in which the required equations must in any
case be satisfied is that of the special theory of relativity, in which the

have certain constant values. Let this be the case in a certain finite
space in relation to a definite system of co-ordinates Relatively to this
system all the components of the Riemann tensor defined in (43),
vanish. For the space under consideration they then vanish, also in any
other system of co-ordinates.

Thus the required equations of the matter-free gravitational field
must in any case be satisfied if all vanish. But this condition goes
too far. For it is clear that, e.g., the gravitational field generated by a
material point in its environment certainly cannot be “transformed
away” by any choice of the system of co-ordinates, i.e. it cannot be
transformed to the case of constant 

This prompts us to require for the matter-free gravitational field
that the symmetrical tensor derived from the tensor shall
vanish. Thus we obtain ten equations for the ten quantities which
are satisfied in the special case of the vanishing of all With the
choice which we have made of a system of co-ordinates, and taking
(44) into consideration, the equations for the matter-free field are

. . . (47)

It must be pointed out that there is only a minimum of arbitrariness
in the choice of these equations. For besides there is no tensor of sec-
ond rank which is formed from the and its derivatives, contains no
derivations higher than second, and is linear in these derivatives.*

These equations, which proceed, by the method of pure mathe-
matics, from the requirement of the general theory of relativity, give

gmn

Gmn

1�g � 1

0	amn

0xa
� 	amb	

b
na � 0

Brmnt.
gmn,
Brmnt,Gmn,

gmn.

Brmst

Brmst,
K0.

gmn
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*Properly speaking, this can be affirmed only of the tensor

where is a constant. If, however, we set this tensor we come back again to the equations Gmn � 0.� 0,l

Gmn � lgmn g abGab,



us, in combination with the equations of motion (46), to a first
approximation Newton’s law of attraction, and to a second approxi-
mation the explanation of the motion of the perihelion of the planet
Mercury discovered by Leverrier (as it remains after corrections for
perturbation have been made). These facts must, in my opinion, be
taken as a convincing proof of the correctness of the theory.

§ 15. THE HAMILTONIAN FUNCTION FOR THE GRAVITATIONAL

FIELD. LAWS OF MOMENTUM AND ENERGY

To show that the field equations correspond to the laws of momen-
tum and energy, it is most convenient to write them in the following
Hamiltonian form:—

. . . (47a)

where, on the boundary of the finite four-dimensional region of inte-
gration which we have in view, the variations vanish.

We first have to show that the form (47a) is equivalent to the
equations (47). For this purpose we regard H as a function of the 
and the 
Then in the first place

But

The terms arising from the last two terms in round brackets are of
different sign, and result from each other (since the denomination of
the summation indices is immaterial) through interchange of the
indices and They cancel each other in the expression for 
because they are multiplied by the quantity which is symmetri-
cal with respect to the indices and Thus there remains only theb.m

	amb,
dH,b.m

d 1 g mn	bna2 � �1
2 d cg

mng bla
0gnl
0xa

�
0gal
0xn

�
0gan
0xl
bd .

� �	amb	
b
nadg

mn � 2	ambd 1 g
mn	bna2.

dH � 	amb	
b
nadg

mn � 2g mn	ambd	
b
na

g mns  1� 0g mn�0xs2.
g mn

1�g � 1

H � gmn	amb	
b
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d�Hdt � 0
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first term in round brackets to be considered, so that, taking (31) into
account, we obtain

Thus

. . . (48)

Carrying out the variation in (47a), we get in the first place

. . . (47b)

which, on account of (48), agrees with (47), as was to be proved.
If we multiply (47b) by then because

and, consequently,

we obtain the equation

or*

. . . (49)

where, on account of (48), the second equation of (47), and (34)

. . (50)

It is to be noticed that is not a tensor; on the other hand (49)
applies to all systems of co-ordinates for which This equa-
tion expresses the law of conservation of momentum and of energy
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for the gravitational field. Actually the integration of this equation over
a three-dimensional volume V yields the four equations

. (49a)

where l, m, n denote the direction-cosines of direction of the inward
drawn normal at the element dS of the bounding surface (in the sense
of Euclidean geometry). We recognize in this the expression of the laws
of conservation in their usual form. The quantities we call the
“energy components” of the gravitational field.

I will now give equations (47) in a third form, which is particularly
useful for a vivid grasp of our subject. By multiplication of the field
equations (47) by these are obtained in the “mixed” form. Note that

which quantity, by reason of (34), is equal to

or (with different symbols for the summation indices)

The third term of this expression cancels with the one arising from
the second term of the field equations (47); using relation (50), the
second term may be written

where Thus instead of equations (47) we obtain

. . (51)

§ 16. THE GENERAL FORM OF THE FIELD EQUATIONS

OF GRAVITATION

The field equations for matter-free space formulated in § 15 are to be
compared with the field equation

§ 2f � 0
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of Newton’s theory. We require the equation corresponding to Pois-
son’s equation

where denotes the density of matter.
The special theory of relativity has led to the conclusion that inert

mass is nothing more or less than energy, which finds its complete
mathematical expression in a symmetrical tensor of second rank, the
energy-tensor. Thus in the general theory of relativity we must intro-
duce a corresponding energy-tensor of matter which, like the
energy-components [equations (49) and (50)] of the gravitational
field, will have mixed character, but will pertain to a symmetrical
covariant tensor.*

The system of equation (51) shows how this energy-tensor (cor-
responding to the density in Poisson’s equation) is to be introduced
into the field equations of gravitation. For if we consider a complete
system (e.g. the solar system), the total mass of the system, and there-
fore its total gravitating action as well, will depend on the total energy
of the system, and therefore on the ponderable energy together with
the gravitational energy. This will allow itself to be expressed by intro-
ducing into (51), in place of the energy-components of the gravita-
tional field alone, the sums of the energy-components of
matter and of gravitational field. Thus instead of (51) we obtain the
tensor equation

. (52)

where we have set (Laue’s scalar). These are the required gen-
eral field equations of gravitation in mixed form. Working back from
these, we have in place of (47)

. (53)1�g � 1
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It must be admitted that this introduction of the energy-tensor of
matter is not justified by the relativity postulate alone. For this reason
we have here deduced it from the requirement that the energy of the
gravitational field shall act gravitatively in the same way as any other
kind of energy. But the strongest reason for the choice of these equa-
tions lies in their consequence, that the equations of conservation of
momentum and energy, corresponding exactly to equations (49) and
(49a), hold good for the components of the total energy. This will be
shown in § 17.

§ 17. THE LAWS OF CONSERVATION IN THE GENERAL CASE

Equation (52) may readily be transformed so that the second term on
the right-hand side vanishes. Contract (52) with respect to the indices

and and after multiplying the resulting equation by sub-
tract it from equation (52). This gives

(52a)

On this equation we perform the operation We have

The first and third terms of the round brackets yield contributions
which cancel one another, as may be seen by interchanging, in the
contribution of the third term, the summation indices � and on
the one hand, and and on the other. The second term may be re-
modelled by (31), so that we have

. . (54)

The second term on the left-hand side of (52a) yields in the first place

or
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With the choice of co-ordinates which we have made, the term deriv-
ing from the last term in round brackets disappears by reason of (29).
The other two may be combined, and together, by (31), they give

so that in consideration of (54), we have the identity

. . (55)

From (55) and (52a), it follows that

. . . (56)

Thus it results from our field equations of gravitation that the laws
of conservation of momentum and energy are satisfied. This may be
seen most easily from the consideration which leads to equation (49a);
except that here, instead of the energy components of the gravita-
tional field, we have to introduce the totality of the energy compo-
nents of matter and gravitational field.

§ 18. THE LAWS OF MOMENTUM AND ENERGY FOR MATTER,
AS A CONSEQUENCE OF THE FIELD EQUATIONS

Multiplying (53) by we obtain, by the method adopted in
§ 15, in view of the vanishing of

the equation

or, in view of (56),

. . . (57)

Comparison with (41b) shows that with the choice of system of
co-ordinates which we have made, this equation predicates nothing
more or less than the vanishing of divergence of the material energy-
tensor. Physically, the occurrence of the second term on the left-hand
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side shows that laws of conservation of momentum and energy do not
apply in the strict sense for matter alone, or else that they apply only
when the are constant, i.e. when the field intensities of gravita-
tion vanish. This second term is an expression for momentum, and
for energy, as transferred per unit of volume and time from the grav-
itational field to matter. This is brought out still more clearly by 
re-writing (57) in the sense of (41) as

. . . (57a)

The right side expresses the energetic effect of the gravitational field
on matter.

Thus the field equations of gravitation contain four conditions
which govern the course of material phenomena. They give the equa-
tions of material phenomena completely, if the latter is capable of
being characterized by four differential equations independent of one
another.*

D. MATERIAL PHENOMENA

The mathematical aids developed in part B enable us forthwith to gen-
eralize the physical laws of matter (hydrodynamics, Maxwell’s electro-
dynamics), as they are formulated in the special theory of relativity, so
that they will fit in with the general theory of relativity. When this is
done, the general principle of relativity does not indeed afford us a
further limitation of possibilities; but it makes us acquainted with the
influence of the gravitational field on all processes, without our having
to introduce any new hypothesis whatever.

Hence it comes about that it is not necessary to introduce defi-
nite assumptions as to the physical nature of matter (in the narrower
sense). In particular it may remain an open question whether the the-
ory of the electromagnetic field in conjunction with that of the grav-
itational field furnishes a sufficient basis for the theory of matter or
not. The general postulate of relativity is unable on principle to tell

0Tas
0xa

� �	basT
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us anything about this. It must remain to be seen, during the work-
ing out of the theory, whether electromagnetics and the doctrine of
gravitation are able in collaboration to perform what the former by
itself is unable to do.

§ 19. EULER’S EQUATIONS FOR A FRICTIONLESS

ADIABATIC FLUID

Let p and be two scalars, the former of which we call the “pressure,”
the latter the “density” of a fluid; and let an equation subsist between
them. Let the contravariant symmetrical tensor

. . . (58)

be the contravariant energy-tensor of the fluid. To it belongs the
covariant tensor

. . (58a)

as well as the mixed tensor*

. . . (58b)

Inserting the right-hand side of (58b) in (57a), we obtain the Euler-
ian hydrodynamical equations of the general theory of relativity. They
give, in theory, a complete solution of the problem of motion, since
the four equations (57a), together with the given equation between p
and and the equation

are sufficient, being given, to define the six unknowns

If the are also unknown, the equations (53) are brought in. These
are eleven equations for defining the ten functions so that theseg mn,
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functions appear over-defined. We must remember, however, that the
equations (57a) are already contained in the equations (53), so that
the latter represent only seven independent equations. There is good
reason for this lack of definition, in that the wide freedom of the
choice of co-ordinates causes the problem to remain mathematically
undefined to such a degree that three of the functions of space may
be chosen at will.*

§ 20. MAXWELL’S ELECTROMAGNETIC FIELD EQUATIONS

FOR FREE SPACE

Let be the components of a covariant vector—the electromagnetic
potential vector. From them we form, in accordance with (36), the
components of the covariant six-vector of the electromagnetic
field, in accordance with the system of equations

. . . (59)

It follows from (59) that the system of equations

. . . (60)

is satisfied, its left side being, by (37), an antisymmetrical tensor of
the third rank. System (60) thus contains essentially four equations
which are written out as follows:—

. . . (60a)
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*On the abandonment of the choice of co-ordinates with there remain four functions of space with liberty of choice, 
corresponding to the four arbitrary functions at our disposal in the choice of co-ordinates.
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This system corresponds to the second of Maxwell’s systems of
equations. We recognize this at once by setting

. . . (61)

Then in place of (60a) we may set, in the usual notation of three-
dimensional vector analysis,

. . . (60b)

We obtain Maxwell’s first system by generalizing the form given by
Minkowski. We introduce the contravariant six-vector associated with 

. . . . (62)

and also the contravariant vector of the density of the electric cur-
rent. Then, taking (40) into consideration, the following equations
will be invariant for any substitution whose invariant is unity (in
agreement with the chosen coordinates):—

. . . . (63)

Let

.  . (64)

which quantities are equal to the quantities in the special
case of the restricted theory of relativity; and in addition

we obtain in place of (63)

. . . (63a)

The equations (60), (62), and (63) thus form the generalization
of Maxwell’s field equations for free space, with the convention
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which we have established with respect to the choice of co-
ordinates.

The Energy-components of the Electromagnetic Field.—We form the
inner product

. . . (65)
By (61) its components, written in the three-dimensional manner, are

. . . (65a)

is a covariant vector the components of which are equal to the neg-
ative momentum, or, respectively, the energy, which is transferred from
the electric masses to the electromagnetic field per unit of time and
volume. If the electric masses are free, that is, under the sole influence
of the electromagnetic field, the covariant vector will vanish.

To obtain the energy-components of the electromagnetic field,
we need only give to equation the form of equation (57).
From (63) and (65) we have in the first place

The second term of the right-hand side, by reason of (60), permits
the transformation

which latter expression may, for reasons of symmetry, also be written
in the form

But for this we may set

The first of these terms is written more briefly
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the second, after the differentiation is carried out, and after some
reduction, results in

Taking all three terms together we obtain the relation

. . . (66)

where

Equation (66), if vanishes, is, on account of (30), equivalent
to (57) or (57a) respectively. Therefore the are the energy-
components of the electromagnetic field. With the help of (61) and
(64), it is easy to show that these energy-components of the electro-
magnetic field in the case of the special theory of relativity give the
well-known Maxwell-Poynting expressions.

We have now deduced the general laws which are satisfied by the
gravitational field and matter, by consistently using a system of co-
ordinates for which We have thereby achieved a consider-
able simplification of formulae and calculations, without failing to
comply with the requirement of general covariance; for we have drawn
our equations from generally covariant equations by specializing the
system of co-ordinates.

Still the question is not without a formal interest, whether with a
correspondingly generalized definition of the energy-components of
gravitational field and matter, even without specializing the system of
co-ordinates, it is possible to formulate laws of conservation in the form
of equation (56), and field equations of gravitation of the same nature
as (52) or (52a), in such a manner that on the left we have a diver-
gence (in the ordinary sense), and on the right the sum of the energy-
components of matter and gravitation. I have found that in both cases
this is actually so. But I do not think that the communication of my
somewhat extensive reflexions on this subject would be worth while,
because after all they do not give us anything that is materially new.
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E

§ 21. NEWTON’S THEORY AS A FIRST APPROXIMATION

As has already been mentioned more than once, the special theory of
relativity as a special case of the general theory is characterized by the

having the constant values (4). From what has already been said,
this means complete neglect of the effects of gravitation. We arrive at
a closer approximation to reality by considering the case where the 
differ from the values of (4) by quantities which are small compared
with 1, and neglecting small quantities of second and higher order.
(First point of view of approximation.)

It is further to be assumed that in the space-time territory under
consideration the at spatial infinity, with a suitable choice of co-
ordinates, tend toward the values (4); i.e. we are considering gravita-
tional fields which may be regarded as generated exclusively by mat-
ter in the finite region.

It might be thought that these approximations must lead us
to Newton’s theory. But to that end we still need to approximate the
fundamental equations from a second point of view. We give our atten-
tion to the motion of a material point in accordance with the equations
(16). In the case of the special theory of relativity the components

may take on any values. This signifies that any velocity

may occur, which is less than the velocity of light in vacuo. If we
restrict ourselves to the case which almost exclusively offers itself to
our experience, of v being small as compared with the velocity of light,
this denotes that the components

are to be treated as small quantities, while to the second order of
small quantities, is equal to one. (Second point of view of approximation.)
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Now we remark that from the first point of view of approxima-
tion the magnitudes are all small magnitudes of at least the first
order. A glance at (46) thus shows that in this equation, from the sec-
ond point of view of approximation, we have to consider only terms
for which Restricting ourselves to terms of lowest order
we first obtain in place of (46) the equations

where we have set or with restriction to terms which
from the first point of view of approximation are of first order:—

If in addition we suppose the gravitational field to be a quasi-static
field, by confining ourselves to the case where the motion of the
matter generating the gravitational field is but slow (in comparison
with the velocity of the propagation of light), we may neglect on
the right-hand side differentiations with respect to the time in com-
parison with those with respect to the space co-ordinates, so that
we have

. . (67)

This is the equation of motion of the material point according to
Newton’s theory, in which plays the part of the gravitational
potential. What is remarkable in this result is that the component 
of the fundamental tensor alone defines, to a first approximation, the
motion of the material point.

We now turn to the field equations (53). Here we have to take
into consideration that the energy-tensor of “matter” is almost exclu-
sively defined by the density of matter in the narrower sense, i.e. by
the second term of the right-hand side of (58) [or, respectively, (58a)
or (58b)]. If we form the approximation in question, all the compo-
nents vanish with the one exception of On the left-handT44 � r � T.
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side of (53) the second term is a small quantity of second order; the
first yields, to the approximation in question,

For this gives, with the omission of terms differentiated
with respect to time,

The last of equations (53) thus yields

. . . (68)

The equations (67) and (68) together are equivalent to Newton’s law
of gravitation.

By (67) and (68) the expression for the gravitational potential
becomes

. . . (68a)

while Newton’s theory, with the unit of time which we have chosen, gives

in which K denotes the constant usually called the con-
stant of gravitation. By comparison we obtain

. . . (69)

§ 22. BEHAVIOUR OF RODS AND CLOCKS IN THE STATIC

GRAVITATIONAL FIELD. BENDING OF LIGHT-RAYS. MOTION

OF THE PERIHELION OF A PLANETARY ORBIT

To arrive at Newton’s theory as a first approximation we had to calcu-
late only one component, of the ten of the gravitational field,
since this component alone enters into the first approximation, (67),
of the equation for the motion of the material point in the gravita-
tional field. From this, however, it is already apparent that other
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components of the must differ from the values given in (4) by small
quantities of the first order. This is required by the condition 

For a field-producing point mass at the origin of co-ordinates, we
obtain, to the first approximation, the radially symmetrical solution

. . (70)

where is 1 or 0, respectively, accordingly as or and
r is the quantity On account of (68a)

. . . . (70a)

if M denotes the field-producing mass. It is easy to verify that the field
equations (outside the mass) are satisfied to the first order of small
quantities.

We now examine the influence exerted by the field of the mass M
upon the metrical properties of space. The relation

always holds between the “locally” (§ 4) measured lengths and times
ds on the one hand, and the differences of co-ordinates on the
other hand.

For a unit-measure of length laid “parallel” to the axis of x, for
example, we should have to set 
Therefore If, in addition, the unit-measure lies on the
axis of x, the first of equations (70) gives

From these two relations it follows that, correct to a first order of small
quantities,
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The unit measuring-rod thus appears a little shortened in relation
to the system of co-ordinates by the presence of the gravitational field,
if the rod is laid along a radius.

In an analogous manner we obtain the length of co-ordinates in
tangential direction if, for example, we set

The result is

. . . . (71a)

With the tangential position, therefore, the gravitational field of the
point of mass has no influence on the length of a rod.

Thus Euclidean geometry does not hold even to a first approxi-
mation in the gravitational field, if we wish to take one and the same
rod, independently of its place and orientation, as a realization of the
same interval; although, to be sure, a glance at (70a) and (69) shows
that the deviations to be expected are much too slight to be notice-
able in measurements of the earth’s surface.

Further, let us examine the rate of a unit clock, which is arranged
to be at rest in a static gravitational field. Here we have for a clock
period 
Therefore

or

. . . . (72)

Thus the clock goes more slowly if set up in the neighbourhood of
ponderable masses. From this it follows that the spectral lines of light
reaching us from the surface of large stars must appear displaced
towards the red end of the spectrum.*
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We now examine the course of light-rays in the static gravitational
field. By the special theory of relativity the velocity of light is given
by the equation

and therefore by the general theory of relativity by the equation

. . . . (73)

If the direction, i.e. the ratio is given, equation (73) gives
the quantities

and accordingly the velocity

defined in the sense of Euclidean geometry. We easily recognize that
the course of the light-rays must be bent with regard to the system
of co-ordinates, if the are not constant. If n is a direction
perpendicular to the propagation of light, the Huyghens principle
shows that the light-ray, envisaged in the plane has the cur-
vature 

We examine the curvature undergone by a ray of light passing by
a mass M at the distance If we choose the system of co-ordinates
in agreement with the accompanying diagram, the total bending of
the ray (calculated positively if concave towards the origin) is given in
sufficient approximation by

while (73) and (70) give

Carrying out the calculation, this gives
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According to this, a ray of light going past the sun undergoes a deflex-
ion of 1.7 ; and a ray going past the planet Jupiter a deflexion of
about .02 .

If we calculate the gravitational field to a higher degree of approxi-
mation, and likewise with corresponding accuracy the orbital motion of
a material point of relatively infinitely small mass, we find a deviation of
the following kind from the Kepler-Newton laws of planetary motion.
The orbital ellipse of a planet undergoes a slow rotation, in the direc-
tion of motion, of amount

. . . (75)

per revolution. In this formula a denotes the major semi-axis, c the
velocity of light in the usual measurement, e the eccentricity, T the
time of revolution in seconds.*

Calculation gives for the planet Mercury a rotation of the orbit of
43 per century, corresopnding exactly to astronomical observation
(Leverrier); for the astronomers have discovered in the motion of the
perihelion of his planet, after allowing for disturbances by other plan-
ets, an inexplicable remainder of this magnitude.
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*For the calculation I refer to the original papers: A. Einstein, Sitzungsber. d. Preuss. Akad. d. Wiss., 1915, p. 831; K. Schwarzschild,
ibid., 1916, p. 189.

FIG. 4.



HAMILTON’S PRINCIPLE

AND THE GENERAL THEORY

OF RELATIVITY

BY

A. Einstein

Translated from “Hamiltonsches Princip und allgemeine Relativitätstheorie,”
Sitzungsberichte der Preussischen Akad. d. Wissenschaften, 1916.

THE general theory of relativity has recently been given in a partic-
ularly clear form by H. A. Lorentz and D. Hilbert,* who have deduced
its equations from one single principle of variation. The same thing
will be done in the present paper. But my purpose here is to present
the fundamental connexions in as perspicuous a manner as possible,
and in as general terms as is permissible from the point of view of the
general theory of relativity. In particular we shall make as few spe-
cializing assumptions as possible, in marked contrast to Hilbert’s
treatment of the subject. On the other hand, in antithesis to my own
most recent treatment of the subject, there is to be complete liberty
in the choice of the system of co-ordinates.

§ 1. THE PRINCIPLE OF VARIATION AND THE FIELD-EQUATIONS

OF GRAVITATION AND MATTER

Let the gravitational field be described as usual by the tensor† of the
(or the and matter, including the electromagnetic field, by

any number of space-time functions How these functions may be
characterized in the theory of invariants does not concern us. Further,
let be a function of the
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*Four papers by Lorentz in the Publications of the Koninkl. Akad. yan Wetensch. te Amsterdam, 1915 and 1916; D. Hilbert,
Göttinger Nachr., 1915, Part 3.

†No use is made for the present of the tensor character of the gmn.



The principle of variation

. . . . (1)

then gives us as many differential equations as there are functions 
and to be defined, if the and are varied independently of
one another, and in such a way that at the limits of integration the

and all vanish.

We will now assume that is linear in the and that the coef-
ficients of the depend only on the We may then replace the
principle of variation (1) by one which is more convenient for us. For
by appropriate partial integration we obtain

. . . (2)

where F denotes an integral over the boundary of the domain in ques-
tion, and depends only on the and no longer
on the From (2) we obtain, for such variations as are of interest
to us,

. . . (3)

so that we may replace our principle of variation (1) by the more con-
venient form

. . . (1a)

By carrying out the variation of the and the we obtain, as
field-equations of gravitation and matter, the equations†
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0H*

0g mn
� 0

q1r2g mn

d�H*dt � 0.

d�Hdt � d�H*dt,

g mnst.
g mn, g mns , q1r2, q1r2a,H*

�Hdt � �H*dt � F

g mn.g mnst

gst,H

0
0xs
1dgmn2dq1r2, dg

mn,

q1r2gmnq1r2

gmn

d�Hdt � 0
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†For brevity the summation symbols are omitted in the formulæ. Indices occurring twice in a term are always to be taken as summed.

Thus in (4), for example, denotes the term a
a

0
0xa
a

0H*

0g mna
b.

0
0xa
a

0H*

0g mna
b



§ 2. SEPARATE EXISTENCE OF THE GRAVITATIONAL FIELD

If we make no restrictive assumption as to the manner in which 
depends on the the energy-components can-
not be divided into two parts, one belonging to the gravitational field,
the other to matter. To ensure this feature of the theory, we make the
following assumption

. . . . (6)
where is to depend only on the and only on

Equations (4), (4a) then assume the form

. . . (7)

. . . (8)

Here stands in the same relation to as to 
It is to be noted carefully that equations (8) or (5) would have to

give way to others, if we were to assume or to be also depend-
ent on derivatives of the of order higher than the first. Likewise
it might be imaginable that the would have to be taken, not as
independent of one another, but as connected by conditional equa-
tions. All this is of no importance for the following developments, as
these are based solely on the equations (7), which have been found by
varying our integral with respect to the 

§ 3. PROPERTIES OF THE FIELD EQUATIONS OF GRAVITATION

CONDITIONED BY THE THEORY OF INVARIANTS

We now introduce the assumption that
. . . . (9)

is an invariant. This determines the transformational character of the
As to the transformational character of the which describe

matter, we make no supposition. On the other hand, let the functions

as well as and be invariants in

relation to any substitutions of space-time co-ordinates. From these

M �
M1�g

,G �
G1�g

,H �
H1�g

,

q1r2,gmn.

ds2 � gmndxmdxn

g mn.

q1r2

q1r2

HM

H.H*GG*

0
0xa
a

0M

0q1r2a
b �

0M

0q1r2
� 0

0
0xa
a

0G*
0g mna
b �

0G*
0g mn

�
0M

0g mn

gmn, q1r2, q1r2a.
Mg mn, g mns , g mnst ,G

H � G � M

g mn, g mns , g mnst , q1r2, q1r2a,
H
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assumptions follows the general covariance of the equations (7) and
(8), deduced from (1). It further follows that G (apart from a con-
stant factor) must be equal to the scalar of Riemann’s tensor of cur-
vature; because there is no other invariant with the properties required
for G.† Thereby is also perfectly determined, and consequently the
left-hand side of field equation (7) as well.‡

From the general postulate of relativity there follow certain prop-
erties of the function which we shall now deduce. For this pur-
pose we carry through an infinitesimal transformation of the co-ordinates,
by setting

. . . . (10)
where the are arbitrary, infinitely small functions of the co-ordinates,
and are the co-ordinates, in the new system, of the world-point
having the co-ordinates in the original system. As for the co-ordinates,
so too for any other magnitude a law of transformation holds good,
of the type

where must always be expressible by the From the covariant
property of the we easily deduce for the and the laws of
transformation

. . (11)

. . . (12)

Since depends only on the and it is possible, with the
help of (11) and (12), to calculate We thus obtain the equation

(13)

where for brevity we have set

(14)Sns � 2 
0G*

0g ms
 g mn � 2 

0G*

0g msa
 g mna � G*dns �

0G*

0g man
 g mas .

1�g¢a
G*1�g
b � Sns

01¢xs2

0xn
� 2 

0G*

0g msa
g mn 

02¢xs
0xn0xa

,

¢G*.
g mns ,g mnG*

¢g mns �
01¢g mn2

0xs
� g mna

01¢xa2

0xs

¢g mn � g ma
01¢xn2

0xa
� gna

01¢xm2

0xa

gmnsgmng mn
¢xn.¢c

c¿ � c � ¢c,

c,
xn

x¿n
¢xn

x¿n � xn � ¢xn

G*
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†Herein is to be found the reason why the general postulate of relativity leads to a very definite theory of gravitation.
‡By performing partial integration we obtain
G* � 1�g g mv 3 5ma, b6 5nb, a6 � 5mn, a6 5ab, b6 4 .



From these two equations we draw two inferences which are important

for what follows. We know that is an invariant with respect to

any substitution, but we do not know this of It is easy to

demonstrate, however, that the latter quantity is an invariant with
respect to any linear substitutions of the co-ordinates. Hence it follows

that the right side of (13) must always vanish if all vanish.

Consequently must satisfy the identity
. . . . (15)

If, further, we choose the so that they differ from zero only
in the interior of a given domain, but in infinitesimal proximity to
the boundary they vanish, then, with the transformation in question,
the value of the boundary integral occurring in equation (2) does not
change. Therefore and, in consequence,†

But the left-hand side of the equation must vanish, since both 

and are invariants. Consequently the right-hand side also
vanishes. Thus, taking (14), (15), and (16) into consideration, we
obtain, in the first place, the equation

. . . (16)

Transforming this equation by two partial integrations, and having
regard to the liberty of choice of the we obtain the identity

. . . (17)

From the two identities (16) and (17), which result from the

invariance of and therefore from the postulate of general relativity,

we now have to draw conclusions.

G1�g
,

02

0xn 0xa
ag mn 

0G*

0g msa
b � 0

¢xs,

� 0G*

0g msa
g mn 

021¢xs2

0xn0xa
dt � 0

1�g dt

G1�g

¢ �Gdt � ¢ �G*dt.

¢F � 0,

¢xn

Sns � 0
G*

02¢xs
0xn0xa

G*1�g
.

G1�g
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†By the introduction of the quantities and instead of and .H*HG*G



We first transform the field equations (7) of gravitation by mixed
multiplication by We then obtain (by interchanging the indices

and as equivalents of the field equations (7), the equations

. . (18)

where we have set

. . . . . . . (19)

(20)

The last expression for is vindicated by (14) and (15). By differen-
tiation of (18) with respect to and summation for there follows,
in view of (17),

. . . (21)

Equation (21) expresses the conservation of momentum and energy.
We call the components of the energy of matter, the compo-
nents of the energy of the gravitational field.

Having regard to (20), there follows from the field equations (7)
of gravitation, by multiplication by and summation with respect
to and 

or, in view of (19) and (21),

. . . (22)

where denotes the quantities These are four equations
which the energy-components of matter have to satisfy.

It is to be emphasized that the (generally covariant) laws of con-
servation (21) and (22) are deduced from the field equations (7) of
gravitation, in combination with the postulate of general covariance
(relativity) alone, without using the field equations (8) for material
phenomena.
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COSMOLOGICAL

CONSIDERATIONS ON

THE GENERAL THEORY

OF RELATIVITY
BY

A. EINSTEIN

Translated from “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,”
Sitzungsberichte der Preussischen Akad. d. Wissenschaften, 1917.

IT is well known that Poisson’s equation
. . . . (1)

in combination with the equations of motion of a material point is
not as yet a perfect substitute for Newton’s theory of action at a dis-
tance. There is still to be taken into account the condition that at spa-
tial infinity the potential tends toward a fixed limiting value. There
is an analogous state of things in the theory of gravitation in general
relativity. Here, too, we must supplement the differential equations by
limiting conditions at spatial infinity, if we really have to regard the
universe as being of infinite spatial extent.

In my treatment of the planetary problem I chose these limiting
conditions in the form of the following assumption: it is possible to
select a system of reference so that at spatial infinity all the gravita-
tional potentials become constant. But it is by no means evident
a priori that we may lay down the same limiting conditions when we
wish to take larger portions of the physical universe into considera-
tion. In the following pages the reflexions will be given which, up to
the present, I have made on this fundamentally important question.

§ 1. THE NEWTONIAN THEORY

It is well known that Newton’s limiting condition of the constant limit
for at spatial infinity leads to the view that the density of matterf

gmn

f

§ 2f � 4pKr
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becomes zero at infinity. For we imagine that there may be a place in
universal space round about which the gravitational field of matter,
viewed on a large scale, possesses spherical symmetry. It then follows
from Poisson’s equation that, in order that may tend to a limit at
infinity, the mean density must decrease toward zero more rapidly
than as the distance r from the centre increases.* In this sense,
therefore, the universe according to Newton is finite, although it may
possess an infinitely great total mass.

From this it follows in the first place that the radiation emitted
by the heavenly bodies will, in part, leave the Newtonian system of
the universe, passing radially outwards, to become ineffective and lost
in the infinite. May not entire heavenly bodies fare likewise? It is
hardly possible to give a negative answer to this question. For it fol-
lows from the assumption of a finite limit for at spatial infinity that
a heavenly body with finite kinetic energy is able to reach spatial infin-
ity by overcoming the Newtonian forces of attraction. By statistical
mechanics this case must occur from time to time, as long as the total
energy of the stellar system—transferred to one single star—is great
enough to send that star on its journey to infinity, whence it never
can return.

We might try to avoid this peculiar difficulty by assuming a very
high value for the limiting potential at infinity. That would be a pos-
sible way, if the value of the gravitational potential were not itself nec-
essarily conditioned by the heavenly bodies. The truth is that we are
compelled to regard the occurrence of any great differences of poten-
tial of the gravitational field as contradicting the facts. These differ-
ences must really be of so low an order of magnitude that the stellar
velocities generated by them do not exceed the velocities actually
observed.

If we apply Boltzmann’s law of distribution for gas molecules to
the stars, by comparing the stellar system with a gas in thermal equi-
librium, we find that the Newtonian stellar system cannot exist at all.

f

1�r2

r

f
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*p is the mean density of matter, calculated for a region which is large as compared with the distance between neighbouring fixed
stars, but small in comparison with the dimensions of the whole stellar system.



For there is a finite ratio of densities corresponding to the finite
difference of potential between the centre and spatial infinity. A
vanishing of the density at infinity thus implies a vanishing of the den-
sity at the centre.

It seems hardly possible to surmount these difficulties on the basis
of the Newtonian theory. We may ask ourselves the question whether
they can be removed by a modification of the Newtonian theory. First
of all we will indicate a method which does not in itself claim to be
taken seriously; it merely serves as a foil for what is to follow. In place
of Poisson’s equation we write

. . . (2)
where denotes a universal constant. If be the uniform density of
a distribution of mass, then

. . . . (3)

is a solution of equation (2). This solution would correspond to the
case in which the matter of the fixed stars was distributed uniformly
through space, if the density is equal to the actual mean density
of the matter in the universe. The solution then corresponds to an
infinite extension of the central space, filled uniformly with matter.
If, without making any change in the mean density, we imagine mat-
ter to be non-uniformly distributed locally, there will be, over and
above the with the constant value of equation (3), an additional

which in the neighbourhood of denser masses will so much the
more resemble the Newtonian field as is smaller in comparison
with 

A universe so constituted would have, with respect to its gravita-
tional field, no centre. A decrease of density in spatial infinity would
not have to be assumed, but both the mean potential and mean den-
sity would remain constant to infinity. The conflict with statistical
mechanics which we found in the case of the Newtonian theory is not
repeated. With a definite but extremely small density, matter is in
equilibrium, without any internal material forces (pressures) being
required to maintain equilibrium.

4pkr.
lf

f,
f

r0

f � �
4pk

l
r0

r0l

§2f � lf � 4pkr
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§ 2. THE BOUNDARY CONDITIONS ACCORDING TO

THE GENERAL THEORY OF RELATIVITY

In the present paragraph I shall conduct the reader over the road that
I have myself travelled, rather a rough and winding road, because oth-
erwise I cannot hope that he will take much interest in the result at
the end of the journey. The conclusion I shall arrive at is that the field
equations of gravitation which I have championed hitherto still need
a slight modification, so that on the basis of the general theory of rel-
ativity those fundamental difficulties may be avoided which have been
set forth in § 1 as confronting the Newtonian theory. This modifica-
tion corresponds perfectly to the transition from Poisson’s equation (1)
to equation (2) of § 1. We finally infer that boundary conditions in
spatial infinity fall away altogether, because the universal continuum in
respect of its spatial dimensions is to be viewed as a self-contained con-
tinuum of finite spatial (three-dimensional) volume.

The opinion which I entertained until recently, as to the limiting
conditions to be laid down in spatial infinity, took its stand on the
following considerations. In a consistent theory of relativity there can
be no inertia relatively to “space,” but only an inertia of masses rela-
tively to one another. If, therefore, I have a mass at a sufficient distance
from all other masses in the universe, its inertia must fall to zero. We
will try to formulate this condition mathematically.

According to the general theory of relativity the negative momen-
tum is given by the first three components, the energy by the last com-
ponent of the covariant tensor multiplied by 

. . . . (4 )

where, as always, we set

. . . . (5 )

In the particularly perspicuous case of the possibility of choosing the
system of co-ordinates so that the gravitational field at every point is
spatially isotropic, we have more simply

ds2 � �A 1dx2
1 � dx2

2 � dx2
32 � Bdx2

4.

ds2 � gmndxmdxn

m1�g gma 
dxa
ds

1�g
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If, moreover, at the same time

we obtain from (4), to a first approximation for small velocities,

for the components of momentum, and for the energy (in the static
case)

From the expressions for the momentum, it follows that 

plays the part of the rest mass. As m is a constant peculiar to the point
of mass, independently of its position, this expression, if we retain the
condition at spatial infinity, can vanish only when A
diminishes to zero, while B increases to infinity. It seems, therefore,
that such a degeneration of the co-efficients is required by the pos-
tulate of relativity of all inertia. This requirement implies that the
potential energy becomes infinitely great at infinity. Thus a
point of mass can never leave the system; and a more detailed inves-
tigation shows that the same thing applies to light-rays. A system of
the universe with such behaviour of the gravitational potentials at
infinity would not therefore run the risk of wasting away which was
mooted just now in connexion with the Newtonian theory.

I wish to point out that the simplifying assumptions as to the gravi-
tational potentials on which this reasoning is based, have been introduced
merely for the sake of lucidity. It is possible to find general formula-
tions for the behaviour of the at infinity which express the essen-
tials of the question without further restrictive assumptions.

At this stage, with the kind assistance of the mathematician J.
Grommer, I investigated centrally symmetrical, static gravitational
fields, degenerating at infinity in the way mentioned. The gravitational
potentials were applied, and from them the energy-tensor of
matter was calculated on the basis of the field equations of gravita-
tion. But here it proved that for the system of the fixed stars no bound-
ary conditions of the kind can come into question at all, as was also
rightly emphasized by the astronomer de Sitter recently.

Tmngmn

gmn

m1B

gmn

1g � � 1

m 
A1B

m1B.

m 
A1B

 dx1

dx4
, m 

A1B
 dx2

dx4
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dx4
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For the contravariant energy-tensor of ponderable matter is
given by

where is the density of matter in natural measure. With an appro-
priate choice of the system of co-ordinates the stellar velocities are very
small in comparison with that of light. We may, therefore, substitute

for ds. This shows us that all components of must be
very small in comparison with the last component But it was
quite impossible to reconcile this condition with the chosen bound-
ary conditions. In the retrospect this result does not appear astonish-
ing. The fact of the small velocities of the stars allows the conclusion
that wherever there are fixed stars, the gravitational potential (in our
case can never be much greater than here on earth. This follows
from statistical reasoning, exactly as in the case of the Newtonian the-
ory. At any rate, our calculations have convinced me that such
conditions of degeneration for the in spatial infinity may not be
postulated.

After the failure of this attempt, two possibilities next present
themselves.

(a) We may require, as in the problem of the planets, that, with
a suitable choice of the system of reference, the in spatial infinity
approximate to the values

(b) We may refrain entirely from laying down boundary condi-
tions for spatial infinity claiming general validity; but at the spatial
limit of the domain under consideration we have to give the sep-
arately in each individual case, as hitherto we were accustomed to give
the initial conditions for time separately.

The possibility (b) holds out no hope of solving the problem, but
amounts to giving it up. This is an incontestable position, which is

gmn

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

gmn

gmn
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Tmn1g44 dx4
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taken up at the present time by de Sitter.* But I must confess that
such a complete resignation in this fundamental question is for me a
difficult thing. I should not make up my mind to it until every effort
to make headway toward a satisfactory view had proved to be vain.

Possibility (a) is unsatisfactory in more respects than one. In the
first place those boundary conditions pre-suppose a definite choice of
the system of reference, which is contrary to the spirit of the relativ-
ity principle. Secondly, if we adopt this view, we fail to comply with
the requirement of the relativity of inertia. For the inertia of a mate-
rial point of mass m (in natural measure) depends upon the but
these differ but little from their postulated values, as given above, for
spatial infinity. Thus inertia would indeed be influenced, but would not
be conditioned by matter (present in finite space). If only one single
point of mass were present, according to this view, it would possess
inertia, and in fact an inertia almost as great as when it is surrounded
by the other masses of the actual universe. Finally, those statistical
objections must be raised against this view which were mentioned in
respect of the Newtonian theory.

From what has now been said it will be seen that I have not suc-
ceeded in formulating boundary conditions for spatial infinity. Never-
theless, there is still a possible way out, without resigning as suggested
under (b). For if it were possible to regard the universe as a continuum
which is finite (closed) with respect to its spatial dimensions, we should
have no need at all of any such boundary conditions. We shall proceed
to show that both the general postulate of relativity and the fact of the
small stellar velocities are compatible with the hypothesis of a spatially
finite universe; though certainly, in order to carry through this idea, we
need a generalizing modification of the field equations of gravitation.

§ 3. THE SPATIALLY FINITE UNIVERSE WITH A UNIFORM

DISTRIBUTION OF MATTER

According to the general theory of relativity the metrical character
(curvature) of the four-dimensional space-time continuum is defined

gmn ;
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*de Sitter, Akad. van Wetensch, te Amsterdam, 8 Nov., 1916.



at every point by the matter at that point and the state of that mat-
ter. Therefore, on account of the lack of uniformity in the distri-
bution of matter, the metrical structure of this continuum must
necessarily be extremely complicated. But if we are concerned with
the structure only on a large scale, we may represent matter to our-
selves as being uniformly distributed over enormous spaces, so that
its density of distribution is a variable function which varies
extremely slowly. Thus our procedure will somewhat resemble that
of the geodesists who, by means of an ellipsoid, approximate to the
shape of the earth’s surface, which on a small scale is extremely
complicated.

The most important fact that we draw from experience as to the
distribution of matter is that the relative velocities of the stars are very
small as compared with the velocity of light. So I think that for the
present we may base our reasoning upon the following approximative
assumption. There is a system of reference relatively to which matter
may be looked upon as being permanently at rest. With respect to this
system, therefore, the contravariant energy-tensor of matter is, by
reason of (5), of the simple form

. . . . (6)

The scalar of the (mean) density of distribution may be a priori a
function of the space co-ordinates. But if we assume the universe to
be spatially finite, we are prompted to the hypothesis that is to
be independent of locality. On this hypothesis we base the following
considerations.

As concerns the gravitational field, it follows from the equation of
motion of the material point

that a material point in a static gravitational field can remain at rest
only when is independent of locality. Since, further, we presupposeg44

d 
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independence of the time co-ordinate for all magnitudes, we may
demand for the required solution that, for all 

. . . . (7)
Further, as always with static problems, we shall have to set

. . . (8)
It remains now to determine those components of the gravitational
potential which define the purely spatial-geometrical relations of our
continuum From our assumption as to the unifor-
mity of distribution of the masses generating the field, it follows that
the curvature of the required space must be constant. With this dis-
tribution of mass, therefore, the required finite continuum of the

with constant will be a spherical space.
We arrive at such a space, for example, in the following way. We

start from a Euclidean space of four dimensions, with a
linear element let, therefore,

. . . (9)
In this space we consider the hyper-surface

. . . (10)
where R denotes a constant. The points of this hyper-surface form
a three-dimensional continuum, a spherical space of radius of cur-
vature R.

The four-dimensional Euclidean space with which we started
serves only for a convenient definition of our hyper-surface. Only
those points of the hyper-surface are of interest to us which have
metrical properties in agreement with those of physical space with a
uniform distribution of matter. For the description of this three-
dimensional continuum we may employ the co-ordinates 
(the projection upon the hyper-plane since, by reason of
(10), can be expressed in terms of Eliminating from
(9), we obtain for the linear element of the spherical space the
expression

. . . (11)
ds2 � gmn djmdjn
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where if if and 
The co-ordinates chosen are convenient when it is a question of exam-
ining the environment of one of the two points 

Now the linear element of the required four-dimensional space-
time universe is also given us. For the potential both indices of
which differ from 4, we have to set

. . (12)

which equation, in combination with (7) and (8), perfectly defines the
behaviour of measuring-rods, clocks, and light-rays.

§ 4. ON AN ADDITIONAL TERM FOR

THE FIELD EQUATIONS OF GRAVITATION

My proposed field equations of gravitation for any chosen system of
co-ordinates run as follows:—

(13)

The system of equations (13) is by no means satisfied when we insert
for the the values given in (7), (8), and (12), and for the (con-
travariant) energy-tensor of matter the values indicated in (6). It will be
shown in the next paragraph how this calculation may conveniently be
made. So that, if it were certain that the field equations (13) which I have
hitherto employed were the only ones compatible with the postulate of
general relativity, we should probably have to conclude that the theory of
relativity does not admit the hypothesis of a spatially finite universe.

However, the system of equations (14) allows a readily suggested
extension which is compatible with the relativity postulate, and is per-
fectly analogous to the extension of Poisson’s equation given by equa-
tion (2). For on the left-hand side of field equation (13) we may add
the fundamental tensor multiplied by a universal constant, �l,gmn,

gmn
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at present unknown, without destroying the general covariance. In
place of field equation (13) we write

. . (13a)

This field equation, with sufficiently small, is in any case also com-
patible with the facts of experience derived from the solar system. It
also satisfies laws of conservation of momentum and energy, because
we arrive at (13a) in place of (13) by introducing into Hamilton’s prin-
ciple, instead of the scalar of Riemann’s tensor, this scalar increased by
a universal constant; and Hamilton’s principle, of course, guarantees
the validity of laws of conservation. It will be shown in § 5 that field
equation (13a) is compatible with our conjectures on field and matter.

§ 5. CALCULATION AND RESULT

Since all points of our continuum are on an equal footing, it is suffi-
cient to carry through the calculation for one point, e.g. for one of the
two points with the co-ordinates

Then for the in (13a) we have to insert the values

wherever they appear differentiated only once or not at all. We thus
obtain in the first place

From this we readily discover, taking (7), (8), and (13) into account,
that all equations (13a) are satisfied if the two relations

or

. . . . (14)

are fulfilled.
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Thus the newly introduced universal constant defines both the
mean density of distribution which can remain in equilibrium and
also the radius R and the volume of spherical space. The total
mass M of the universe, according to our view, is finite, and is in fact

. . (15)

Thus the theoretical view of the actual universe, if it is in corre-
spondence with our reasoning, is the following. The curvature of space
is variable in time and place, according to the distribution of matter,
but we may roughly approximate to it by means of a spherical space.
At any rate, this view is logically consistent, and from the standpoint
of the general theory of relativity lies nearest at hand; whether, from
the standpoint of present astronomical knowledge, it is tenable, will
not here be discussed. In order to arrive at this consistent view, we
admittedly had to introduce an extension of the field equations of
gravitation which is not justified by our actual knowledge of gravita-
tion. It is to be emphasized, however, that a positive curvature of space
is given by our results, even if the supplementary term is not intro-
duced. That term is necessary only for the purpose of making possi-
ble a quasi-static distribution of matter, as required by the fact of the
small velocities of the stars.
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DO GRAVITATIONAL FIELDS

PLAY AN ESSENTIAL PART

IN THE STRUCTURE OF

THE ELEMENTARY PARTICLES

OF MATTER?
BY

A. EINSTEIN

Translated from “Spielen Gravitationsfelder im Aufber der materiellen
Elementarteilchen eine wesentliche Rolle?” Sitzungsberichte der Preussischen

Akad. d. Wissenschaften, 1919.

NEITHER the Newtonian nor the relativistic theory of gravitation has
so far led to any advance in the theory of the constitution of matter.
In view of this fact it will be shown in the following pages that there
are reasons for thinking that the elementary formations which go to
make up the atom are held together by gravitational forces.

§ 1. DEFECTS OF THE PRESENT VIEW

Great pains have been taken to elaborate a theory which will account
for the equilibrium of the electricity constituting the electron. G. Mie,
in particular, has devoted deep researches to this question. His theory,
which has found considerable support among theoretical physicists, is
based mainly on the introduction into the energy-tensor of supple-
mentary terms depending on the components of the electro-dynamic
potential, in addition to the energy terms of the Maxwell-Lorentz the-
ory. These new terms, which in outside space are unimportant, are
nevertheless effective in the interior of the electrons in maintaining
equilibrium against the electric forces of repulsion. In spite of the
beauty of the formal structure of this theory, as erected by Mie, Hilbert,
and Weyl, its physical results have hitherto been unsatisfactory. On the
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one hand the multiplicity of possibilities is discouraging, and on
the other hand those additional terms have not as yet allowed them-
selves to be framed in such a simple form that the solution could be
satisfactory.

So far the general theory of relativity has made no change in this
state of the question. If we for the moment disregard the additional
cosmological term, the field equations take the form

. . . (1)

where denotes the contracted Riemann tensor of curvature, G the
scalar of curvature formed by repeated contraction, and the
energy-tensor of “matter.” The assumption that the do not depend
on the derivatives of the is in keeping with the historical devel-
opment of these equations. For these quantities are, of course, the
energy-components in the sense of the special theory of relativity, in
which variable do not occur. The second term on the left-hand
side of the equation is so chosen that the divergence of the left-hand
side of (1) vanishes identically, so that taking the divergence of (1),
we obtain the equation

. . . . (2)

which in the limiting case of the special theory of relativity gives the
complete equations of conservation

Therein lies the physical foundation for the second term of the left-
hand side of (1). It is by no means settled a priori that a limiting tran-
sition of this kind has any possible meaning. For if gravitational fields
do play an essential part in the structure of the particles of matter,
the transition to the limiting case of constant would, for them,
lose its justification, for indeed, with constant there could not be
any particles of matter. So if we wish to contemplate the possibility
that gravitation may take part in the structure of the fields which
constitute the corpuscles, we cannot regard equation (1) as confirmed.
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Placing in (1) the Maxwell-Lorentz energy-components of the
electromagnetic field 

. . . (3)

we obtain for (2), by taking the divergence, and after some reduction,*
. . . . (4)

where, for brevity, we have set

. . (5)

In the calculation we have employed the second of Maxwell’s systems
of equations

. . . (6)

We see from (4) that the current-density must everywhere vanish.
Therefore, by equation (1), we cannot arrive at a theory of the elec-
tron by restricting ourselves to the electro-magnetic components of the
Maxwell-Lorentz theory, as has long been known. Thus if we hold to
(1) we are driven on to the path of Mie’s theory.†

Not only the problem of matter, but the cosmological problem as
well, leads to doubt as to equation (1). As I have shown in the pre-
vious paper, the general theory of relativity requires that the universe
be spatially finite. But this view of the universe necessitated an exten-
sion of equations (1), with the introduction of a new universal con-
stant standing in a fixed relation to the total mass of the universe
(or, respectively, to the equilibrium density of matter). This is gravely
detrimental to the formal beauty of the theory.

§ 2. THE FIELD EQUATIONS FREED OF SCALARS

The difficulties set forth above are removed by setting in place of field
equations (1) the field equations

. . . (1a)
where denotes the energy-tensor of the electromagnetic field given
by (3).
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†Cf. D. Hilbert, Göttinger Nachr., 20 Nov., 1915.



The formal justification for the factor in the second term of
this equation lies in its causing the scalar of the left-hand side,

to vanish identically, as the scalar of the right-hand side does by
reason of (3). If we had reasoned on the basis of equations (1) instead
of (1a), we should, on the contrary, have obtained the condition 
which would have to hold good everywhere for the independently
of the electric field. It is clear that the system of equations [(1a), (3)] is
a consequence of the system [(1), (3)], but not conversely.

We might at first sight feel doubtful whether (1a) together with (6)
sufficiently define the entire field. In a generally relativistic theory we
need differential equations, independent of one another, for the
definition of n independent variables, since in the solution, on account
of the liberty of choice of the co-ordinates, four quite arbitrary func-
tions of all co-ordinates must naturally occur. Thus to define the six-
teen independent quantities and we require twelve equations,
all independent of one another. But as it happens, nine of the equations
(1a), and three of the equations (6) are independent of one another.

Forming the divergence of (1a), and taking into account that the
divergence of vanishes, we obtain

. . . (4a)

From this we recognize first of all that the scalar of curvature G in the
four-dimensional domains in which the density of electricity vanishes,
is constant. If we assume that all these parts of space are connected, and
therefore that the density of electricity differs from zero only in sepa-
rate “world-threads,” then the scalar of curvature, everywhere outside
these world-threads, possesses a constant value But equation (4a)
also allows an important conclusion as to the behaviour of G within the
domains having a density of electricity other than zero. If, as is cus-
tomary, we regard electricity as a moving density of charge, by setting
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we obtain from (4a) by inner multiplication by on account of the
antisymmetry of the relation

. . . . (8 )

Thus the scalar of curvature is constant on every world-line of the
motion of electricity. Equation (4a) can be interpreted in a graphic man-
ner by the statement: The scalar of curvature plays the part of a nega-
tive pressure which, outside of the electric corpuscles, has a constant
value In the interior of every corpuscle there subsists a negative pres-
sure (positive the fall of which maintains the electro-dynamic
force in equilibrium. The minimum of pressure, or, respectively, the
maximum of the scalar of curvature, does not change with time in the
interior of the corpuscle.

We now write the field equations (1a) in the form

(9)

On the other hand, we transform the equations supplied with the cos-
mological term as already given

Subtracting the scalar equation multiplied by , we next obtain

Now in regions where only electrical and gravitational fields are pres-
ent, the right-hand side of this equation vanishes. For such regions we
obtain, by forming the scalar,

In such regions, therefore, the scalar of curvature is constant, so that
may be replaced by Thus we may write the earlier field equa-

tion (1) in the form

. . (10)

Comparing (9) with (10), we see that there is no difference between
the new field equations and the earlier ones, except that instead of Tmn
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as tensor of “gravitating mass” there now occurs 

which is independent of the scalar of curvature. But the new formulation
has this great advantage, that the quantity appears in the funda-
mental equations as a constant of integration, and no longer as a uni-
versal constant peculiar to the fundamental law.

§ 3. ON THE COSMOLOGICAL QUESTION

The last result already permits the surmise that with our new formu-
lation the universe may be regarded as spatially finite, without any
necessity for an additional hypothesis. As in the preceding paper I shall
again show that with a uniform distribution of matter, a spherical
world is compatible with the equations.

In the first place we set

(11)

Then if and P are, respectively, the curvature tensor of the sec-
ond rank and the curvature scalar in three-dimensional space, we
have

It therefore follows for our case that

We pursue our reflexions, from this point on, in two ways. Firstly,
with the support of equation (1a). Here denotes the energy-tensor
of the electro-magnetic field, arising from the electrical particles con-
stituting matter. For this field we have everywhere

The individual are quantities which vary rapidly with position; but
for our purpose we no doubt may replace them by their mean values.
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We therefore have to choose

. . (12)

and therefore

In consideration of what has been shown hitherto, we obtain in place
of (1a)

. . . (13)

. . . . (14)

The scalar of equation (13) agrees with (14). It is on this account that
our fundamental equations permit the idea of a spherical univers. For
from (13) and (14) follows

. . . (15)

and it is known* that this system is satisfied by a (three-dimensional)
spherical universe.

But we may also base our reflexions on the equations (9). On the
right-hand side of (9) stand those terms which, from the phenome-
nological point of view, are to be replaced by the energy-tensor of mat-
ter; that is, they are to be replaced by

where denotes the mean density of matter assumed to be at rest. We
thus obtain the equations
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. . . . . (17)1

2 P � 1
4 G0 � �kr

Pik � 1
2gikP � 1

4gikG0 � 0

r

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 r

Pik � 4
3 
kT4

41ggik � 0

1
4 P � �

kT4
41g

Pik � 1
4gikP � �1

3gik 
kT4

41g
Tik � 1

3 
T4

41g  gik, T44 �
T4

41g.

T1
1 � T2

2 � T3
3 � �1

3 T
4
4 � const.

Tnm � 0 1for m � n2,
f

123

A STUBBORNLY PERSISTENT ILLUSION

*Cf. H. Weyl, “Raum, Zoit, Matorie,” § 33.



From the scalar of equation (16) and from (17) we obtain

. . . . (18)

and consequently from (16)

. . . . (19)
which equation, with the exception of the expression for the co-efficient,
agrees with (15). By comparison we obtain

. . . . . (20)
This equation signifies that of the energy constituting matter three-
quarters is to be ascribed to the electromagnetic field, and one-quarter
to the gravitational field.

§ 4. CONCLUDING REMARKS

The above reflexions show the possibility of a theoretical construction
of matter out of gravitational field and electromagnetic field alone,
without the introduction of hypothetical supplementary terms on the
lines of Mie’s theory. This possibility appears particularly promising in
that it frees us from the necessity of introducing a special constant 
for the solution of the cosmological problem. On the other hand, there
is a peculiar difficulty. For, if we specialize (1) for the spherically sym-
metrical static case we obtain one equation too few for defining the

and with the result that any spherically symmetrical distribu-
tion of electricity appears capable of remaining in equilibrium. Thus
the problem of the constitution of the elementary quanta cannot yet
be solved on the immediate basis of the given field equations.
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Relativity–The
Special and General

Theory

T
he earth is a slightly squashed sphere, and yet from the ground,
it appears flat, and was thought to be flat for several thousand
years. Likewise, our universe appears to us to be “flat” in the

sense that Euclid’s axioms seem obviously true; chief among these that
two straight lines or beams of light could intersect at most just once.
This “flat” picture of space is the simplest one, and the picture
accepted by all physicists prior to Einstein.

Einstein did not immediately overturn the flat model of the uni-
verse, but simply added another dimension to height, width, and
breadth: time. In “Relativity—The Special and General Theory,”
Einstein described physics in flat space, the domain of special relativity.
His postulates were quite simple: first, the laws of physics are the same
for all observers moving at constant velocity, and second, all such
observers will measure the speed of light. Sir Isaac Newton would cer-
tainly have conceded the first point, but the second he would have
deemed impossible. Einstein achieved this effect by noting that the
laws of physics were unchanged not only under rotations between
directions in space, but also under “rotations” between space and time.

Einstein recognized that the theory did not include gravity, and thus
was necessarily incomplete. To remedy this, as discussed in Part II, he
argued that the universe may be curved as well. The curvature of space
and time has a number of profound implications: Light does not travel
in straight lines, but rather is curved around massive bodies. Clocks sit-
ting near massive bodies run slower than clocks far away. In other words,
Einstein noted that not only is space curved, but time is as well. With
a simple set of “field equations,” Einstein derived not only both the laws
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of motion and of gravity put forth by Newton, but also paved the way
for explanations of a number of hitherto inexplicable phenomena.

Almost immediately after Einstein published his theory of general
relativity in 1915, Karl Schwarzschild showed that Einstein’s field
equations could be solved in the case of a single massive body.
Although it was not realized at the time, and never admitted by Ein-
stein, this solution describes compact objects from which not even
light can escape: what we now call “black holes.” We now believe that
some stars end their lives as black holes, and at the center of most, if
not all, galaxies there lie supermassive black holes. In our own Milky
Way Galaxy, recent evidence suggests that there is a black hole approx-
imately 3 million times the mass of the sun.

Since light is bent around massive objects, the images of distant
galaxies can be distorted or even multiplied on their way to observers
here on earth. This effect, termed “gravitational lensing,” is not unlike
that of a curved piece of glass. One of the first observational confir-
mations of general relativity was a lensing effect seen by Sir Arthur
Eddington during a solar eclipse in 1919. Eddington noted that the
position of a star seemed to shift in the sky relative to its normal posi-
tion. The shift was consistent with the result predicted by Einstein given
the mass of the sun. The bending of space is not necessarily local.
Much of modern astrophysics is concerned with the question of what
the overall “shape” of the universe is, and whether it is “flat,” “closed”
like a sphere (and thus finite), or “open” like a saddle (and thus infi-
nite). Recent measurements from the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite suggest that the universe is flat,
or so large that it cannot yet be distinguished from perfect flatness.

When Einstein first proposed general relativity, he recognized that
his theory predicted that the universe as a whole could not be static
as had always been assumed: the attraction of gravity meant that the
universe had to be either expanding or contracting. Therefore, he
added a “cosmological constant” to balance the attraction of gravity
and keep the universe static. In 1922, the astronomer Edwin Hubble
measured the expansion of the universe through observation, an expan-
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sion wholly consistent with Einstein’s original theory, but not with his
value of the cosmological constant. In Appendix 4 of this work, Ein-
stein responds to the recent findings, and elsewhere notes that his ad
hoc introduction of a cosmological constant was his “greatest blunder.”
As an interesting epilogue, however measurements of distant supernova
explosions during the mid-1990s indicated that, though not the value
proposed by Einstein, there may be a cosmological constant after all.
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PREFACE
The present book is intended, as far as possible, to give an exact
insight into the theory of Relativity to those readers who, from a
general scientific and philosophical point of view, are interested in
the theory, but who are not conversant with the mathematical
apparatus of theoretical physics. The work presumes a standard of
education corresponding to that of a university matriculation exam-
ination, and, despite the shortness of the book, a fair amount of
patience and force of will on the part of the reader. The author has
spared himself no pains in his endeavour to present the main ideas
in the simplest and most intelligible form, and on the whole, in the
sequence and connection in which they actually originated. In the
interest of clearness, it appeared to me inevitable that I should repeat
myself frequently, without paying the slightest attention to the ele-
gance of the presentation. I adhered scrupulously to the precept of
that brilliant theoretical physicist L. Boltzmann, according to whom
matters of elegance ought to be left to the tailor and to the cobbler.
I make no pretence of having withheld from the reader difficulties
which are inherent to the subject. On the other hand, I have pur-
posely treated the empirical physical foundations of the theory in a
“step-motherly” fashion, so that readers unfamiliar with physics may
not feel like the wanderer who was unable to see the forest for trees.
May the book bring some one a few happy hours of suggestive
thought!

A. EINSTEIN
December 1916
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PART I: THE SPECIAL
THEORY OF RELATIVITY

O N E

PHYSICAL MEANING OF

GEOMETRICAL PROPOSITIONS
In your schooldays most of you who read this book made acquaintance
with the noble building of Euclid’s geometry, and you remember—
perhaps with more respect than love—the magnificent structure, on
the lofty staircase of which you were chased about for uncounted
hours by conscientious teachers. By reason of your past experience,
you would certainly regard everyone with disdain who should pro-
nounce even the most out-of-the-way proposition of this science to be
untrue. But perhaps this feeling of proud certainty would leave you
immediately if some one were to ask you: “What, then, do you mean
by the assertion that these propositions are true?” Let us proceed to
give this question a little consideration.

Geometry sets out from certain conceptions such as “plane,”
“point,” and “straight line,” with which we are able to associate more
or less definite ideas, and from certain simple propositions (axioms)
which, in virtue of these ideas, we are inclined to accept as “true.”
Then, on the basis of a logical process, the justification of which we
feel ourselves compelled to admit, all remaining propositions are
shown to follow from those axioms, i.e. they are proven. A proposi-
tion is then correct (“true”) when it has been derived in the recog-
nised manner from the axioms. The question of the “truth” of the
individual geometrical propositions is thus reduced to one of the
“truth” of the axioms. Now it has long been known that the last ques-
tion is not only unanswerable by the methods of geometry, but that



it is in itself entirely without meaning. We cannot ask whether it is
true that only one straight line goes through two points. We can only
say that Euclidean geometry deals with things called “straight lines,”
to each of which is ascribed the property of being uniquely determined
by two points situated on it. The concept “true” does not tally with
the assertions of pure geometry, because by the word “true” we are
eventually in the habit of designating always the correspondence with
a “real” object; geometry, however, is not concerned with the relation
of the ideas involved in it to objects of experience, but only with the
logical connection of these ideas among themselves.

It is not difficult to understand why, in spite of this, we feel con-
strained to call the propositions of geometry “true.” Geometrical ideas
correspond to more or less exact objects in nature, and these last are
undoubtedly the exclusive cause of the genesis of those ideas. Geom-
etry ought to refrain from such a course, in order to give to its struc-
ture the largest possible logical unity. The practice, for example, of
seeing in a “distance” two marked positions on a practically rigid
body is something which is lodged deeply in our habit of thought.
We are accustomed further to regard three points as being situated
on a straight line, if their apparent positions can be made to coin-
cide for observation with one eye, under suitable choice of our place
of observation.

If, in pursuance of our habit of thought, we now supplement the
propositions of Euclidean geometry by the single proposition that two
points on a practically rigid body always correspond to the same dis-
tance (line-interval), independently of any changes in position to
which we may subject the body, the propositions of Euclidean geom-
etry then resolve themselves into propositions on the possible relative
position of practically rigid bodies.1 Geometry which has been sup-
plemented in this way is then to be treated as a branch of physics. We
can now legitimately ask as to the “truth” of geometrical propositions
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1It follows that a natural object is associated also with a straight line. Three points A, B and C on a rigid body thus lie in a straight
line when, the points A and C being given, B is chosen such that the sum of the distances A B and B C is as short as possible. This
incomplete suggestion will suffice for our present purpose.       
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interpreted in this way, since we are justified in asking whether these
propositions are satisfied for those real things we have associated with
the geometrical ideas. In less exact terms we can express this by saying
that by the “truth” of a geometrical proposition in this sense we under-
stand its validity for a construction with ruler and compasses.

Of course the conviction of the “truth” of geometrical propositions
in this sense is founded exclusively on rather incomplete experience.
For the present we shall assume the “truth” of the geometrical propo-
sitions, then at a later stage (in the general theory of relativity) we
shall see that this “truth” is limited, and we shall consider the extent
of its limitation.



T W O

THE SYSTEM OF CO-ORDINATES
On the basis of the physical interpretation of distance which has been
indicated, we are also in a position to establish the distance between
two points on a rigid body by means of measurements. For this pur-
pose we require a “distance” (rod S ) which is to be used once and for
all, and which we employ as a standard measure. If, now, A and B are
two points on a rigid body, we can construct the line joining them
according to the rules of geometry; then, starting from A, we can mark
off the distance S time after time until we reach B. The number of
these operations required is the numerical measure of the distance A
B. This is the basis of all measurement of length.1

Every description of the scene of an event or of the position of an
object in space is based on the specification of the point on a rigid
body (body of reference) with which that event or object coincides.
This applies not only to scientific description, but also to everyday
life. If I analyse the place specification “Trafalgar Square, London,”2 I
arrive at the following result. The earth is the rigid body to which the
specification of place refers; “Trafalgar Square, London,” is a well-
defined point, to which a name has been assigned, and with which
the event coincides in space.3

This primitive method of place specification deals only with places
on the surface of rigid bodies, and is dependent on the existence of
points on this surface which are distinguishable from each other. But
we can free ourselves from both of these limitations without altering
the nature of our specification of position. If, for instance, a cloud is
hovering over Trafalgar Square, then we can determine its position rel-
ative to the surface of the earth by erecting a pole perpendicularly on
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1Here we have assumed that there is nothing left over, i.e. that the measurement gives a whole number. This difficulty is got over by
the use of divided measuring-rods, the introduction of which does not demand any fundamentally new method.   

2I have chosen this as being more familiar to the English reader than the “Potsdamer Platz, Berlin,” which is referred to in the orig-
inal. (R. W. L.)     

3It is not necessary here to investigate further the significance of the expression “coincidence in space.” This conception is sufficiently
obvious to ensure that differences of opinion are scarcely likely to arise as to its applicability in practice.    



the Square, so that it reaches the cloud. The length of the pole meas-
ured with the standard measuring-rod, combined with the specification
of the position of the foot of the pole, supplies us with a complete
place specification. On the basis of this illustration, we are able to see
the manner in which a refinement of the conception of position has
been developed.

(a) We imagine the rigid body, to which the place specification is
referred, supplemented in such a manner that the object whose posi-
tion we require is reached by the completed rigid body.

(b) In locating the position of the object, we make use of a num-
ber (here the length of the pole measured with the measuring-rod)
instead of designated points of reference.

(c) We speak of the height of the cloud even when the pole which
reaches the cloud has not been erected. By means of optical observations
of the cloud from different positions on the ground, and taking into
account the properties of the propagation of light, we determine the
length of the pole we should have required in order to reach the cloud.

From this consideration we see that it will be advantageous if, in
the description of position, it should be possible by means of numer-
ical measures to make ourselves independent of the existence of
marked positions (possessing names) on the rigid body of reference.
In the physics of measurement this is attained by the application of
the Cartesian system of co-ordinates.

This consists of three plane surfaces perpendicular to each other and
rigidly attached to a rigid body. Referred to a system of co-ordinates, the
scene of any event will be determined (for the main part) by the spec-
ification of the lengths of the three perpendiculars or co-ordinates (x, y,
z) which can be dropped from the scene of the event to those three
plane surfaces. The lengths of these three perpendiculars can be deter-
mined by a series of manipulations with rigid measuring-rods performed
according to the rules and methods laid down by Euclidean geometry.

In practice, the rigid surfaces which constitute the system of co-
ordinates are generally not available; furthermore, the magnitudes of
the co-ordinates are not actually determined by constructions with
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rigid rods, but by indirect means. If the results of physics and astron-
omy are to maintain their clearness, the physical meaning of specifi-
cations of position must always be sought in accordance with the
above considerations.1

We thus obtain the following result: Every description of events
in space involves the use of a rigid body to which such events have to
be referred. The resulting relationship takes for granted that the laws
of Euclidean geometry hold for “distances,” the “distance” being rep-
resented physically by means of the convention of two marks on a
rigid body.

1A refinement and modification of these views does not become necessary until we come to deal with the general theory of relativ-
ity, treated in the second part of this book.    
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T H R E E

SPACE AND TIME IN CLASSICAL

MECHANICS
The purpose of mechanics is to describe how bodies change their posi-
tion in space with “time.” I should load my conscience with grave sins
against the sacred spirit of lucidity were I to formulate the aims of
mechanics in this way, without serious reflection and detailed expla-
nations. Let us proceed to disclose these sins.

It is not clear what is to be understood here by “position’’ and
“space.” I stand at the window of a railway carriage which is travelling
uniformly, and drop a stone on the embankment, without throwing it.
Then, disregarding the influence of the air resistance, I see the stone
descend in a straight line. A pedestrian who observes the misdeed from
the footpath notices that the stone falls to earth in a parabolic curve. I
now ask: Do the “positions” traversed by the stone lie “in reality” on a
straight line or on a parabola? Moreover, what is meant here by motion
“in space”? From the considerations of the previous section the answer
is self-evident. In the first place we entirely shun the vague word “space,”
of which, we must honestly acknowledge, we cannot form the slightest
conception, and we replace it by “motion relative to a practically rigid
body of reference.” The positions relative to the body of reference (rail-
way carriage or embankment) have already been defined in detail in the
preceding section. If instead of “body of reference” we insert “system of
co-ordinates,” which is a useful idea for mathematical description, we
are in a position to say: The stone traverses a straight line relative to a
system of co-ordinates rigidly attached to the carriage, but relative to a
system of co-ordinates rigidly attached to the ground (embankment) it
describes a parabola. With the aid of this example it is clearly seen that
there is no such thing as an independently existing trajectory (lit. “path-
curve”1), but only a trajectory relative to a particular body of reference.

1That is, a curve along which the body moves.   
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In order to have a complete description of the motion, we must
specify how the body alters its position with time; i.e. for every point
on the trajectory it must be stated at what time the body is situated
there. These data must be supplemented by such a definition of time
that, in virtue of this definition, these time-values can be regarded
essentially as magnitudes (results of measurements) capable of obser-
vation. If we take our stand on the ground of classical mechanics, we
can satisfy this requirement for our illustration in the following man-
ner. We imagine two clocks of identical construction; the man at the
railway-carriage window is holding one of them, and the man on the
footpath the other. Each of the observers determines the position on
his own reference-body occupied by the stone at each tick of the clock
he is holding in his hand. In this connection we have not taken
account of the inaccuracy involved by the finiteness of the velocity of
propagation of light. With this and with a second difficulty prevail-
ing here we shall have to deal in detail later.
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F O U R

THE GALILEIAN SYSTEM

OF CO-ORDINATES
As is well known, the fundamental law of the mechanics of Galilei-
Newton, which is known as the law of inertia, can be stated thus: A
body removed sufficiently far from other bodies continues in a state
of rest or of uniform motion in a straight line. This law not only says
something about the motion of the bodies, but it also indicates the
reference-bodies or systems of co-ordinates, permissible in mechanics,
which can be used in mechanical description. The visible fixed stars
are bodies for which the law of inertia certainly holds to a high degree
of approximation. Now if we use a system of co-ordinates which is
rigidly attached to the earth, then, relative to this system, every fixed
star describes a circle of immense radius in the course of an astro-
nomical day, a result which is opposed to the statement of the law of
inertia. So that if we adhere to this law we must refer these motions
only to systems of co-ordinates relative to which the fixed stars do not
move in a circle. A system of co-ordinates of which the state of motion
is such that the law of inertia holds relative to it is called a “Galileian
system of co-ordinates.” The laws of the mechanics of Galilei-Newton
can be regarded as valid only for a Galileian system of co-ordinates.
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F I V E

THE PRINCIPLE OF RELATIVITY

(IN THE RESTRICTED SENSE)
In order to attain the greatest possible clearness, let us return to our
example of the railway carriage supposed to be travelling uniformly.
We call its motion a uniform translation (“uniform” because it is of
constant velocity and direction, “translation” because although the car-
riage changes its position relative to the embankment yet it does not
rotate in so doing). Let us imagine a raven flying through the air in
such a manner that its motion, as observed from the embankment, is
uniform and in a straight line. If we were to observe the flying raven
from the moving railway carriage, we should find that the motion of
the raven would be one of different velocity and direction, but that it
would still be uniform and in a straight line. Expressed in an abstract
manner we may say: If a mass m is moving uniformly in a straight
line with respect to a co-ordinate system K, then it will also be mov-
ing uniformly and in a straight line relative to a second co-ordinate
system provided that the latter is executing a uniform translatory
motion with respect to K. In accordance with the discussion contained
in the preceding section, it follows that:

If K is a Galileian co-ordinate system, then every other co-ordinate
system is a Galileian one, when, in relation to K, it is in a condi-
tion of uniform motion of translation. Relative to the mechanical
laws of Galilei-Newton hold good exactly as they do with respect to K.

We advance a step farther in our generalisation when we express the
tenet thus: If, relative to K, is a uniformly moving co-ordinate system
devoid of rotation, then natural phenomena run their course with respect
to according to exactly the same general laws as with respect to K.
This statement is called the principle of relativity (in the restricted sense).

As long as one was convinced that all natural phenomena were
capable of representation with the help of classical mechanics, there

K ¿

K ¿

K ¿
K ¿

K ¿,
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was no need to doubt the validity of this principle of relativity. But
in view of the more recent development of electrodynamics and optics
it became more and more evident that classical mechanics affords an
insufficient foundation for the physical description of all natural phe-
nomena. At this juncture the question of the validity of the principle
of relativity became ripe for discussion, and it did not appear impos-
sible that the answer to this question might be in the negative.

Nevertheless, there are two general facts which at the outset speak
very much in favour of the validity of the principle of relativity. Even
though classical mechanics does not supply us with a sufficiently broad
basis for the theoretical presentation of all physical phenomena, still
we must grant it a considerable measure of “truth,” since it supplies
us with the actual motions of the heavenly bodies with a delicacy of
detail little short of wonderful. The principle of relativity must there-
fore apply with great accuracy in the domain of mechanics. But that a
principle of such broad generality should hold with such exactness in
one domain of phenomena, and yet should be invalid for another, is
a priori not very probable.

We now proceed to the second argument, to which, moreover, we
shall return later. If the principle of relativity (in the restricted sense)
does not hold, then the Galileian co-ordinate systems K, etc.,
which are moving uniformly relative to each other, will not be equiv-
alent for the description of natural phenomena. In this case we should
be constrained to believe that natural laws are capable of being for-
mulated in a particularly simple manner, and of course only on con-
dition that, from amongst all possible Galileian co-ordinate systems,
we should have chosen one (K0) of a particular state of motion as our
body of reference. We should then be justified (because of its merits
for the description of natural phenomena) in calling this system
“absolutely at rest,” and all other Galileian systems K “in motion.” If,
for instance, our embankment were the system then our railway
carriage would be a system K, relative to which less simple laws would
hold than with respect to This diminished simplicity would be
due to the fact that the carriage K would be in motion (i.e. “really”) with

K0.

K0,

K ¿, K –,
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respect to In the general laws of nature which have been formu-
lated with reference to K, the magnitude and direction of the veloc-
ity of the carriage would necessarily play a part. We should expect, for
instance, that the note emitted by an organ-pipe placed with its axis
parallel to the direction of travel would be different from that emit-
ted if the axis of the pipe were placed perpendicular to this direction.
Now in virtue of its motion in an orbit round the sun, our earth is
comparable with a railway carriage travelling with a velocity of about
30 kilometres per second. If the principle of relativity were not valid
we should therefore expect that the direction of motion of the earth
at any moment would enter into the laws of nature, and also that
physical systems in their behaviour would be dependent on the ori-
entation in space with respect to the earth. For owing to the alteration
in direction of the velocity of revolution of the earth in the course of
a year, the earth cannot be at rest relative to the hypothetical system

throughout the whole year. However, the most careful observations
have never revealed such anisotropic properties in terrestrial physical
space, i.e. a physical non-equivalence of different directions. This is
very powerful argument in favour of the principle of relativity.

K0

K0.
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S I X

THE THEOREM OF THE

ADDITION OF VELOCITIES

EMPLOYED IN CLASSICAL

MECHANICS
Let us suppose our old friend the railway carriage to be travelling along
the rails with a constant velocity , and that a man traverses the length
of the carriage in the direction of travel with a velocity w. How quickly
or, in other words, with what velocity W does the man advance rela-
tive to the embankment during the process? The only possible answer
seems to result from the following consideration: If the man were to
stand still for a second, he would advance relative to the embankment
through a distance equal numerically to the velocity of the carriage.
As a consequence of his walking, however, he traverses an additional
distance w relative to the carriage, and hence also relative to the
embankment, in this second, the distance w being numerically equal
to the velocity with which he is walking. Thus in total he covers the
distance relative to the embankment in the second con-
sidered. We shall see later that this result, which expresses the theorem
of the addition of velocities employed in classical mechanics, cannot be
maintained; in other words, the law that we have just written down does
not hold in reality. For the time being, however, we shall assume its
correctness.

W � v � w

v

v
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S E V E N

THE APPARENT

INCOMPATIBILITY OF THE LAW

OF PROPAGATION OF LIGHT

WITH THE PRINCIPLE

OF RELATIVITY
There is hardly a simpler law in physics than that according to which
light is propagated in empty space. Every child at school knows, or
believes he knows, that this propagation takes place in straight lines
with a velocity At all events we know with great
exactness that this velocity is the same for all colours, because if this
were not the case, the minimum of emission would not be observed
simultaneously for different colours during the eclipse of a fixed star
by its dark neighbour. By means of similar considerations based on
observations of double stars, the Dutch astronomer De Sitter was also
able to show that the velocity of propagation of light cannot depend
on the velocity of motion of the body emitting the light. The assump-
tion that this velocity of propagation is dependent on the direction
“in space” is in itself improbable.

In short, let us assume that the simple law of the constancy of the
velocity of light c (in vacuum) is justifiably believed by the child at
school. Who would imagine that this simple law has plunged the con-
scientiously thoughtful physicist into the greatest intellectual difficulties?
Let us consider how these difficulties arise.

Of course we must refer the process of the propagation of light
(and indeed every other process) to a rigid reference-body (co-ordinate
system). As such a system let us again choose our embankment. We shall
imagine the air above it to have been removed. If a ray of light be sent
along the embankment, we see from the above that the tip of the ray

c � 300,000 km.�sec.
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will be transmitted with the velocity c relative to the embankment. Now
let us suppose that our railway carriage is again travelling along the
railway lines with the velocity , and that its direction is the same as
that of the ray of light, but its velocity of course much less. Let us
inquire about the velocity of propagation of the ray of light relative
to the carriage. It is obvious that we can here apply the consideration
of the previous section, since the ray of light plays the part of the man
walking along relatively to the carriage. The velocity W of the man rel-
ative to the embankment is here replaced by the velocity of light rela-
tive to the embankment. w is the required velocity of light with respect
to the carriage, and we have

The velocity of propagation of a ray of light relative to the carriage
thus comes out smaller than c.

But this result comes into conflict with the principle of relativity
set forth in Section 5. For, like every other general law of nature, the
law of the transmission of light in vacuo must, according to the prin-
ciple of relativity, be the same for the railway carriage as reference-
body as when the rails are the body of reference. But, from our above
consideration, this would appear to be impossible. If every ray of light
is propagated relative to the embankment with the velocity c, then for
this reason it would appear that another law of propagation of light
must necessarily hold with respect to the carriage—a result contradic-
tory to the principle of relativity.

In view of this dilemma there appears to be nothing else for it
than to abandon either the principle of relativity or the simple law of
the propagation of light in vacuo. Those of you who have carefully
followed the preceding discussion are almost sure to expect that we
should retain the principle of relativity, which appeals so convincingly
to the intellect because it is so natural and simple. The law of the
propagation of light in vacuo would then have to be replaced by a
more complicated law comformable to the principle of relativity. The
development of theoretical physics shows, however, that we cannot
pursue this course. The epoch-making theoretical investigations of

w � c � v.

v
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H. A. Lorentz on the electrodynamical and optical phenomena con-
nected with moving bodies show that experience in this domain leads
conclusively to a theory of electromagnetic phenomena, of which the
law of the constancy of the velocity of light in vacuo is a necessary con-
sequence. Prominent theoretical physicists were therefore more inclined
to reject the principle of relativity, in spite of the fact that no empirical
data had been found which were contradictory to this principle.

At this juncture the theory of relativity entered the arena. As a
result of an analysis of the physical conceptions of time and space, it
became evident that in reality there is not the least incompatibility
between the principle of relativity and the law of propagation of light,
and that by systematically holding fast to both these laws a logically
rigid theory could be arrived at. This theory has been called the spe-
cial theory of relativity to distinguish it from the extended theory, with
which we shall deal later. In the following pages we shall present the
fundamental ideas of the special theory of relativity.
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E I G H T

ON THE IDEA OF TIME

IN PHYSICS
Lightning has struck the rails on our railway embankment at two
places A and B far distant from each other. I make the additional asser-
tion that these two lightning flashes occurred simultaneously. If I ask
you whether there is sense in this statement, you will answer my ques-
tion with a decided “Yes.” But if I now approach you with the request
to explain to me the sense of the statement more precisely, you find
after some consideration that the answer to this question is not so easy
as it appears at first sight.

After some time perhaps the following answer would occur to you:
“The significance of the statement is clear in itself and needs no fur-
ther explanation; of course it would require some consideration if I
were to be commissioned to determine by observations whether in the
actual case the two events took place simultaneously or not.” I can-
not be satisfied with this answer for the following reason. Supposing
that as a result of ingenious consideration an able meteorologist were
to discover that the lightning must always strike the places A and B
simultaneously, then we should be faced with the task of testing
whether or not this theoretical result is in accordance with the reality.
We encounter the same difficulty with all physical statements in which
the conception “simultaneous” plays a part. The concept does not exist
for the physicist until he has the possibility of discovering whether or
not it is fulfilled in an actual case. We thus require a definition of
simultaneity such that this definition supplies us with the method by
means of which, in the present case, he can decide by experiment
whether or not both the lightning strokes occurred simultaneously. As
long as this requirement is not satisfied, I allow myself to be deceived as
a physicist (and of course the same applies if I am not a physicist),
when I imagine that I am able to attach a meaning to the statement
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of simultaneity. (I would ask the reader not to proceed farther until
he is fully convinced on this point.)

After thinking the matter over for some time you then offer the
following suggestion with which to test simultaneity. By measuring
along the rails, the connecting line AB should be measured up and an
observer placed at the mid-point M of the distance AB. This observer
should be supplied with an arrangement (e.g. two mirrors inclined at
90�) which allows him visually to observe both places A and B at the
same time. If the observer perceives the two flashes of lightning at the
same time, then they are simultaneous.

I am very pleased with this suggestion, but for all that I cannot
regard the matter as quite settled, because I feel constrained to raise
the following objection: “Your definition would certainly be right, if
only I knew that the light by means of which the observer at M per-
ceives the lightning flashes travels along the length with the
same velocity as along the length But an examination of this
supposition would only be possible if we already had at our disposal
the means of measuring time. It would thus appear as though we were
moving here in a logical circle.”

After further consideration you cast a somewhat disdainful glance
at me—and rightly so—and you declare: “I maintain my previous def-
inition nevertheless, because in reality it assumes absolutely nothing
about light. There is only one demand to be made of the definition
of simultaneity, namely, that in every real case it must supply us with
an empirical decision as to whether or not the conception that has to
be defined is fulfilled. That my definition satisfies this demand is indis-
putable. That light requires the same time to traverse the path 
as for the path is in reality neither a supposition nor a hypoth-
esis about the physical nature of light, but a stipulation which I can
make of my own freewill in order to arrive at a definition of simul-
taneity.”

It is clear that this definition can be used to give an exact mean-
ing not only to two events, but to as many events as we care to choose,
and independently of the positions of the scenes of the events with

B S M
A S M

B S M.
A S M
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respect to the body of reference1 (here the railway embankment). We
are thus led also to a definition of “time” in physics. For this purpose
we suppose that clocks of identical construction are placed at the
points A, B and C of the railway line (co-ordinate system), and that
they are set in such a manner that the positions of their pointers are
simultaneously (in the above sense) the same. Under these conditions
we understand by the “time” of an event the reading (position of the
hands) of that one of these clocks which is in the immediate vicinity
(in space) of the event. In this manner a time-value is associated with
every event which is essentially capable of observation.

This stipulation contains a further physical hypothesis, the valid-
ity of which will hardly be doubted without empirical evidence to the
contrary. It has been assumed that all these clocks go at the same rate
if they are of identical construction. Stated more exactly: When two
clocks arranged at rest in different places of a reference-body are set
in such a manner that a particular position of the pointers of the one
clock is simultaneous (in the above sense) with the same position of
the pointers of the other clock, then identical “settings” are always
simultaneous (in the sense of the above definition).

1We suppose further, that, when three events A, B and C occur in different places in such a manner that A is simultaneous with B,
and B is simultaneous with C (simultaneous in the sense of the above definition), then the criterion for the simultaneity of the pair of
events A, C is also satisfied. This assumption is a physical hypothesis about the law of propagation of light; it must certainly be fulfilled if
we are to maintain the law of the constancy of the velocity of light in vacuo.    
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N I N E

THE RELATIVITY OF

SIMULTANEITY
Up to now our considerations have been referred to a particular body
of reference, which we have styled a “railway embankment.” We sup-
pose a very long train travelling along the rails with the constant veloc-
ity v and in the direction indicated in Fig. 1. People travelling in this

train will with advantage use the train as a rigid reference-body (co-
ordinate system); they regard all events in reference to the train. Then
every event which takes place along the line also takes place at a par-
ticular point of the train. Also the definition of simultaneity can be
given relative to the train in exactly the same way as with respect to
the embankment. As a natural consequence, however, the following
question arises:

Are two events (e.g. the two strokes of lightning A and B) which
are simultaneous with reference to the railway embankment also simul-
taneous relatively to the train? We shall show directly that the answer
must be in the negative.

When we say that the lightning strokes A and B are simultaneous
with respect to the embankment, we mean: the rays of light emitted
at the places A and B, where the lightning occurs, meet each other at
the mid-point M of the length of the embankment. But the
events A and B also correspond to positions A and B on the train. Let

be the mid-point of the distance on the travelling train. Just
when the flashes1 of lightning occur, this point naturally coincidesM ¿

A S BM ¿

A S B

1As judged from the embankment.   

FIG. 1.
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with the point M, but it moves towards the right in the diagram with
the velocity v of the train. If an observer sitting in the position 
in the train did not possess this velocity, then he would remain per-
manently at M, and the light rays emitted by the flashes of lightning
A and B would reach him simultaneously, i.e. they would meet just
where he is situated. Now in reality (considered with reference to the
railway embankment) he is hastening towards the beam of light com-
ing from B, whilst he is riding on ahead of the beam of light coming
from A. Hence the observer will see the beam of light emitted from
B earlier than he will see that emitted from A. Observers who take
the railway train as their reference-body must therefore come to the
conclusion that the lightning flash B took place earlier than the light-
ning flash A. We thus arrive at the important result:

Events which are simultaneous with reference to the embankment
are not simultaneous with respect to the train, and vice versa (relativ-
ity of simultaneity). Every reference-body (co-ordinate system) has its
own particular time; unless we are told the reference-body to which
the statement of time refers, there is no meaning in a statement of the
time of an event.

Now before the advent of the theory of relativity it had always
tacitly been assumed in physics that the statement of time had an
absolute significance, i.e. that it is independent of the state of motion
of the body of reference. But we have just seen that this assumption
is incompatible with the most natural definition of simultaneity; if we
discard this assumption, then the conflict between the law of the prop-
agation of light in vacuo and the principle of relativity (developed in
Section 7) disappears.

We were led to that conflict by the considerations of Section 6,
which are now no longer tenable. In that section we concluded that
the man in the carriage, who traverses the distance w per second rela-
tive to the carriage, traverses the same distance also with respect to the
embankment in each second of time. But, according to the foregoing
considerations, the time required by a particular occurrence with
respect to the carriage must not be considered equal to the duration

M ¿
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of the same occurrence as judged from the embankment (as reference-
body). Hence it cannot be contended that the man in walking trav-
els the distance w relative to the railway line in a time which is equal
to one second as judged from the embankment.

Moreover, the considerations of Section 6 are based on yet a sec-
ond assumption, which, in the light of a strict consideration, appears
to be arbitrary, although it was always tacitly made even before the
introduction of the theory of relativity.
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T E N

ON THE RELATIVITY OF THE

CONCEPTION OF DISTANCE
Let us consider two particular points on the train1 travelling along the
embankment with the velocity v, and inquire as to their distance apart.
We already know that it is necessary to have a body of reference for
the measurement of a distance, with respect to which body the dis-
tance can be measured up. It is the simplest plan to use the train itself
as reference-body (co-ordinate system). An observer in the train meas-
ures the interval by marking off his measuring-rod in a straight line
(e.g. along the floor of the carriage) as many times as is necessary to
take him from the one marked point to the other. Then the number
which tells us how often the rod has to be laid down is the required
distance.

It is a different matter when the distance has to be judged from
the railway line. Here the following method suggests itself. If we call

and the two points on the train whose distance apart is required,
then both of these points are moving with the velocity v along the
embankment. In the first place we require to determine the points A
and B of the embankment which are just being passed by the two
points and at a particular time t—judged from the embank-
ment. These points A and B of the embankment can be determined
by applying the definition of time given in Section 8. The distance
between these points A and B is then measured by repeated applica-
tion of the measuring-rod along the embankment.

A priori it is by no means certain that this last measurement will
supply us with the same result as the first. Thus the length of the train
as measured from the embankment may be different from that
obtained by measuring in the train itself. This circumstance leads us

B¿A¿

B¿A¿

1E.g. the middle of the first and of the twentieth carriage.     
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to a second objection which must be raised against the apparently
obvious consideration of Section 6. Namely, if the man in the carriage
covers the distance w in a unit of time—measured from the train—
then this distance—as measured from the embankment—is not neces-
sarily also equal to w.
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E L E V E N

THE LORENTZ

TRANSFORMATION
The results of the last three sections show that the apparent incom-
patibility of the law of propagation of light with the principle of rel-
ativity (Section 7) has been derived by means of a consideration which
borrowed two unjustifiable hypotheses from classical mechanics; these
are as follows:

(1) The time-interval (time) between two events is independent of
the condition of motion of the body of reference.

(2) The space-interval (distance) between two points of a rigid body
is independent of the condition of motion of the body of reference.

If we drop these hypotheses, then the dilemma of Section 7 dis-
appears, because the theorem of the addition of velocities derived in
Section 6 becomes invalid. The possibility presents itself that the law
of the propagation of light in vacuo may be compatible with the prin-
ciple of relativity, and the question arises: How have we to modify the
considerations of Section 6 in order to remove the apparent disagree-
ment between these two fundamental results of experience? This ques-
tion leads to a general one. In the discussion of Section 6 we have to
do with places and times relative both to the train and to the embank-
ment. How are we to find the place and time of an event in relation
to the train, when we know the place and time of the event with
respect to the railway embankment? Is there a thinkable answer to this
question of such a nature that the law of transmission of light in vacuo
does not contradict the principle of relativity? In other words: Can we
conceive of a relation between place and time of the individual events
relative to both reference-bodies, such that every ray of light possesses
the velocity of transmission c relative to the embankment and relative
to the train? This question leads to a quite definite positive answer,
and to a perfectly definite transformation law for the space-time
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magnitudes of an event when changing over from one body of refer-
ence to another.

Before we deal with this, we shall introduce the following inci-
dental consideration. Up to the present we have only considered
events taking place along the embankment, which had mathematically
to assume the function of a straight line. In the manner indicated in
Section 2 we can imagine this reference-body supplemented laterally
and in a vertical direction by means of a framework of rods, so that
an event which takes place anywhere can be localised with reference
to this framework. Similarly, we can imagine the train travelling with
the velocity v to be continued across the whole of space, so that every
event, no matter how far off it may be, could also be localised with
respect to the second framework. Without committing any funda-
mental error, we can disregard the fact that in reality these frameworks
would continually interfere with each other, owing to the impenetra-
bility of solid bodies. In every such framework we imagine three
surfaces perpendicular to each other marked out, and designated as
“co-ordinate planes” (“co-ordinate system”). A co-ordinate system K
then corresponds to the embankment, and a co-ordinate system to
the train. An event, wherever it may have taken place, would be fixed
in space with respect to K by the three perpendiculars x, y, z on the
co-ordinate planes, and with regard to time by a time-value t. Relative
to the same event would be fixed in respect of space and time by
corresponding values which of course are not identical
with x, y, z, t. It has already been set forth in detail how these mag-
nitudes are to be regarded as results of physical measurements.

x¿, y¿, z¿, t¿,
K ¿,

K ¿

FIG. 2.
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Obviously our problem can be exactly formulated in the follow-
ing manner. What are the values , of an event with respect
to when the magnitudes x, y, z, t, of the same event with respect to
K are given? The relations must be so chosen that the law of the trans-
mission of light in vacuo is satisfied for one and the same ray of light
(and of course for every ray) with respect to K and . For the rela-
tive orientation in space of the co-ordinate systems indicated in the
diagram (Fig. 2), this problem is solved by means of the equations:

This system of equations is known as the “Lorentz transformation.”1

If in place of the law of transmission of light we had taken as our
basis the tacit assumptions of the older mechanics as to the absolute
character of times and lengths, then instead of the above we should
have obtained the following equations:

This system of equations is often termed the “Galilei transformation.”
The Galilei transformation can be obtained from the Lorentz trans-
formation by substituting an infinitely large value for the velocity of
light c in the latter transformation.

Aided by the following illustration, we can readily see that, in accor-
dance with the Lorentz transformation, the law of the transmission of

 t¿ � t.
 z¿ � z
 y¿ � y
 x¿ � x � vt

 t¿ �

t �
v
c 2 � x

B1 �
v2

c 2

 z¿ � z
 y¿ � y

 x¿ �
x � vtB1 �

v 2

c 2

K ¿

K ¿,
x¿, y¿, z¿, t¿

1A simple derivation of the Lorentz transformation is given in Appendix 1.     
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light in vacuo is satisfied both for the reference-body K and for the
reference-body A light-signal is sent along the positive x-axis, and
this light-stimulus advances in accordance with the equation.

i.e. with the velocity c. According to the equations of the Lorentz
transformation, this simple relation between x and t involves a rela-
tion between and In point of fact, if we substitute for x the value
ct in the first and fourth equations of the Lorentz transformation, we
obtain:

from which, by division, the expression

immediately follows. If referred to the system the propagation of
light takes place according to this equation. We thus see that the veloc-
ity of transmission relative to the reference-body is also equal to c.
The same result is obtained for rays of light advancing in any other
direction whatsoever. Of course this is not surprising, since the equa-
tions of the Lorentz transformation were derived conformably to this
point of view.

K ¿

K ¿,
x¿ � ct¿

 t¿ �

a1 �
v
cbtB1 �
v 2

c 2

,

 x¿ �
1c � v2tB1 �

v2

c 2

t¿.x¿

x � ct,

K ¿.
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T W E L V E

THE BEHAVIOUR

OF MEASURING-RODS

AND CLOCKS IN MOTION
I place a metre-rod in the -axis of in such a manner that one end
(the beginning) coincides with the point whilst the other end
(the end of the rod) coincides with the point What is the
length of the metre-rod relatively to the system K ? In order to learn
this, we need only ask where the beginning of the rod and the end of
the rod lie with respect to K at a particular time t of the system K.
By means of the first equation of the Lorentz transformation the val-
ues of these two points at the time can be shown to be

the distance between the points being But the metre-rod is

moving with the velocity v relative to K. It therefore follows that the
length of a rigid metre-rod moving in the direction of its length with
a velocity v is of a metre. The rigid rod is thus shorter
when in motion than when at rest, and the more quickly it is mov-
ing, the shorter is the rod. For the velocity we should have

and for still greater velocities the square-root
becomes imaginary. From this we conclude that in the theory of rel-
ativity the velocity c plays the part of a limiting velocity, which can
neither be reached nor exceeded by any real body.

Of course this feature of the velocity c as a limiting velocity also
clearly follows from the equations of the Lorentz transformation, for
these become meaningless if we choose values of v greater than c.

21 � v2�c2 � 0,
v � c

21 � v2�c2

B1 �
v2

c 2.

 x 1end of rod2 � 1 � B1 �
v2

c 2,

 x 1beginning of rod2 � 0B1 �
v2

c 2

t � 0

x¿ � 1.
x¿ � 0,

K ¿x¿
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If, on the contrary, we had considered a metre-rod at rest in the
x-axis with respect to K, then we should have found that the length
of the rod as judged from would have been this is
quite in accordance with the principle of relativity which forms the
basis of our considerations.

A priori it is quite clear that we must be able to learn something
about the physical behaviour of measuring-rods and clocks from the
equations of transformation, for the magnitudes x, y, z, t, are nothing
more nor less than the results of measurements obtainable by means
of measuring-rods and clocks. If we had based our considerations on
the Galileian transformation we should not have obtained a contrac-
tion of the rod as a consequence of its motion.

Let us now consider a seconds-clock which is permanently situated
at the origin of and are two successive
ticks of this clock. The first and fourth equations of the Lorentz trans-
formation give for these two ticks:

and

As judged from K, the clock is moving with the velocity v; as
judged from this reference-body, the time which elapses between two

strokes of the clock is not one second, but seconds, i.e. a

somewhat larger time. As a consequence of its motion the clock goes
more slowly than when at rest. Here also the velocity c plays the part
of an unattainable limiting velocity.

1B1 �
v2

c2

t �
1B1 �

v2

c2

t � 0

t ¿ � 1K ¿ � t ¿ � 01x¿ � 02

21 � v2�c2 ;K¿
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T H I R T E E N

THEOREM OF THE ADDITION

OF THE VELOCITIES. THE

EXPERIMENT OF FIZEAU
Now in practice we can move clocks and measuring-rods only with
velocities that are small compared with the velocity of light; hence we
shall hardly be able to compare the results of the previous section
directly with the reality. But, on the other hand, these results must
strike you as being very singular, and for that reason I shall now draw
another conclusion from the theory, one which can easily be derived
from the foregoing considerations, and which has been most elegantly
confirmed by experiment.

In Section 6 we derived the theorem of the addition of velocities
in one direction in the form which also results from the hypotheses
of classical mechanics. This theorem can also be deduced readily from
the Galilei transformation (Section 11). In place of the man walking
inside the carriage, we introduce a point moving relatively to the co-
ordinate system in accordance with the equation

By means of the first and fourth equations of the Galilei transforma-
tion we can express and in terms of x and t, and we then obtain

This equation expresses nothing else than the law of motion of the
point with reference to the system K (of the man with reference to
the embankment). We denote this velocity by the symbol W, and we
then obtain, as in Section 6,

. . . (A).
But we can carry out this consideration just as well on the basis

of the theory of relativity. In the equation
x¿ � wt¿

W � v � w

x � 1v � w2t.

t¿x¿

x � wt¿.
K ¿
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we must then express and in terms of x and t, making use of the
first and fourth equations of the Lorentz transformation. Instead of the
equation (A) we then obtain the equation

. . . (B),

which corresponds to the theorem of addition for velocities in one
direction according to the theory of relativity. The question now arises
as to which of these two theorems is the better in accord with expe-
rience. On this point we are enlightened by a most important exper-
iment which the brilliant physicist Fizeau performed more than half
a century ago, and which has been repeated since then by some of the
best experimental physicists, so that there can be no doubt about its
result. The experiment is concerned with the following question. Light
travels in a motionless liquid with a particular velocity w. How quickly
does it travel in the direction of the arrow in the tube T (see the
accompanying diagram, Fig. 3) when the liquid above mentioned is
flowing through the tube with a velocity v?

W �
v � w

1 �
vw
c 2

t¿x¿

FIG. 3.

In accordance with the principle of relativity we shall certainly
have to take for granted that the propagation of light always takes
place with the same velocity w with respect to the liquid, whether the
latter is in motion with reference to other bodies or not. The velocity
of light relative to the liquid and the velocity of the latter relative to
the tube are thus known, and we require the velocity of light relative
to the tube.

It is clear that we have the problem of Section 6 again before us.
The tube plays the part of the railway embankment or of the co-
ordinate system K, the liquid plays the part of the carriage or of the
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co-ordinate system and finally, the light plays the part of the man
walking along the carriage, or of the moving point in the present sec-
tion. If we denote the velocity of the light relative to the tube by W,
then this is given by the equation (A) or (B), according as the Galilei
transformation or the Lorentz transformation corresponds to the facts.
Experiment1 decides in favour of equation (B) derived from the theory
of relativity, and the agreement is, indeed, very exact. According to
recent and most excellent measurements by Zeeman, the influence of
the velocity of flow v on the propagation of light is represented by
formula (B) to within one per cent. 

Nevertheless we must now draw attention to the fact that a theory
of this phenomenon was given by H. A. Lorentz long before the state-
ment of the theory of relativity. This theory was of a purely electrody-
namical nature, and was obtained by the use of particular hypotheses as
to the electromagnetic structure of matter. This circumstance, however,
does not in the least diminish the conclusiveness of the experiment as
a crucial test in favour of the theory of relativity, for the electrody-
namics of Maxwell-Lorentz, on which the original theory was based, in
no way opposes the theory of relativity. Rather has the latter been devel-
oped from electrodynamics as an astoundingly simple combination of
generalisation of the hypotheses, formerly independent of each other, on
which electrodynamics was built.

K ¿,

1Fizeau found W � w � v where is the index of refraction of the liquid. On the other hand, owing to the smallness of

as compared with 1, we can replace (B) in the first place by W � w � v or to the same order of approximation by w � v

which agrees with Fizeau’s result.   a1 �
1

n2
b ,

a1 �
vw

c2
b ,

vw

c2
n �

c
w

a1 �
1

n2
b ,
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F O U R T E E N

THE HEURISTIC VALUE OF

THE THEORY OF RELATIVITY
Our train of thought in the foregoing pages can be epitomised in the
following manner. Experience has led to the conviction that, on the
one hand, the principle of relativity holds true and that on the other
hand the velocity of transmission of light in vacuo has to be consid-
ered equal to a constant c. By uniting these two postulates we obtained
the law of transformation for the rectangular co-ordinates x, y, z and
the time t of the events which constitute the processes of nature. In this
connection we did not obtain the Galilei transformation, but, differing
from classical mechanics, the Lorentz transformation.

The law of transmission of light, the acceptance of which is jus-
tified by our actual knowledge, played an important part in this
process of thought. Once in possession of the Lorentz transformation,
however, we can combine this with the principle of relativity, and sum
up the theory thus:

Every general law of nature must be so constituted that it is trans-
formed into a law of exactly the same form when, instead of the space-
time variables x, y, z, t of the original co-ordinate system K, we introduce
new space-time variables of a co-ordinate system In this
connection the relation between the ordinary and the accented magni-
tudes is given by the Lorentz transformation. Or in brief: General laws
of nature are co-variant with respect to Lorentz transformations.

This is a definite mathematical condition that the theory of rela-
tivity demands of a natural law, and in virtue of this, the theory
becomes a valuable heuristic aid in the search for general laws of
nature. If a general law of nature were to be found which did not sat-
isfy this condition, then at least one of the two fundamental assump-
tions of the theory would have been disproved. Let us now examine
what general results the latter theory has hitherto evinced.

K ¿.x¿, y¿, z¿, t¿
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F I F T E E N

GENERAL RESULTS OF

THE THEORY
It is clear from our previous considerations that the (special) theory
of relativity has grown out of electrodynamics and optics. In these
fields it has not appreciably altered the predictions of theory, but it
has considerably simplified the theoretical structure, i.e. the derivation
of laws, and—what is incomparably more important—it has consid-
erably reduced the number of independent hypotheses forming the
basis of theory. The special theory of relativity has rendered the
Maxwell-Lorentz theory so plausible, that the latter would have been
generally accepted by physicists even if experiment had decided less
unequivocally in its favour.

Classical mechanics required to be modified before it could come
into line with the demands of the special theory of relativity. For the
main part, however, this modification affects only the laws for rapid
motions, in which the velocities of matter v are not very small as com-
pared with the velocity of light. We have experience of such rapid
motions only in the case of electrons and ions; for other motions the
variations from the laws of classical mechanics are too small to make
themselves evident in practice. We shall not consider the motion of
stars until we come to speak of the general theory of relativity. In
accordance with the theory of relativity the kinetic energy of a mate-
rial point of mass m is no longer given by the well-known expression

but by the expression

This expression approaches infinity as the velocity v approaches the
velocity of light c. The velocity must therefore always remain less than

mc 2

B1 �
v2

c 2

.

m 
v2

2
,
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c, however great may be the energies used to produce the acceleration.
If we develop the expression for the kinetic energy in the form of a
series, we obtain

When is small compared with unity, the third of these terms

is always small in comparison with the second, which last is alone con-
sidered in classical mechanics. The first term does not contain the
velocity, and requires no consideration if we are only dealing with the
question as to how the energy of a point-mass depends on the veloc-
ity. We shall speak of its essential significance later.

The most important result of a general character to which the spe-
cial theory of relativity has led is concerned with the conception of
mass. Before the advent of relativity, physics recognised two conser-
vation laws of fundamental importance, namely, the law of the con-
servation of energy and the law of the conservation of mass; these two
fundamental laws appeared to be quite independent of each other. By
means of the theory of relativity they have been united into one law.
We shall now briefly consider how this unification came about, and
what meaning is to be attached to it.

The principle of relativity requires that the law of the conserva-
tion of energy should hold not only with reference to a co-ordinate
system K, but also with respect to every co-ordinate system which
is in a state of uniform motion of translation relative to K, or, briefly,
relative to every “Galileian” system of co-ordinates. In contrast to clas-
sical mechanics, the Lorentz transformation is the deciding factor in
the transition from one such system to another.

By means of comparatively simple considerations we are led to
draw the following conclusion from these premises, in conjunction
with the fundamental equations of the electrodynamics of Maxwell: A
body moving with the velocity v, which absorbs1 an amount of energy

K ¿

mc 2

v2

c2

mc 2 � m 
v2

2
�

3
8

 m 
v4

c2 � # # # #

1 is the energy taken up, as judged from a co-ordinate system moving with the body.     E0
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in the form of radiation without suffering an alteration in velocity
in the process, has, as a consequence, its energy increased by an
amount

In consideration of the expression given above for the kinetic
energy of the body, the required energy of the body comes out to be

Thus the body has the same energy as a body of mass 

moving with the velocity v. Hence we can say: If a body takes up an

amount of energy then its inertial mass increases by an amount 

the inertial mass of a body is not a constant, but varies according to
the change in the energy of the body. The inertial mass of a system
of bodies can even be regarded as a measure of its energy. The law of
the conservation of the mass of a system becomes identical with the
law of the conservation of energy, and is only valid provided that the
system neither takes up nor sends out energy. Writing the expression
for the energy in the form

we see that the term , which has hitherto attracted our attention,
is nothing else than the energy possessed by the body1 before it
absorbed the energy 

A direct comparison of this relation with experiment is not pos-
sible at the present time (1920; see Note, p. 165), owing to the fact

E0.

mc 2

mc2 � E0B1 �
v2

c2

,

E0

c2 ;E0,

am �
E0

c2b

am �
E0

c2 b c
2

B1 �
v2

c2

.

E0B1 �
v2

c 2

.

E0

1As judged from a co-ordinate system moving with the body.   
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that the changes in energy to which we can subject a system are
not large enough to make themselves perceptible as a change in the

inertial mass of the system. is too small in comparison with the

mass m, which was present before the alteration of the energy. It is
owing to this circumstance that classical mechanics was able to estab-
lish successfully the conservation of mass as a law of independent
validity.

Let me add a final remark of a fundamental nature. The success
of the Faraday-Maxwell interpretation of electromagnetic action at a
distance resulted in physicists becoming convinced that there are no
such things as instantaneous actions at a distance (not involving an
intermediary medium) of the type of Newton’s law of gravitation.
According to the theory of relativity, action at a distance with the
velocity of light always takes the place of instantaneous action at a dis-
tance or of action at a distance with an infinite velocity of transmission.
This is connected with the fact that the velocity c plays a fundamental
rôle in this theory. In Part II we shall see in what way this result
becomes modified in the general theory of relativity.

NOTE.—With the advent of nuclear transformation processes, which result from the
bombardment of elements by -particles, protons, deuterons, neutrons or -rays, the equiv-
alence of mass and energy expressed by the relation has been amply confirmed.
The sum of the reacting masses, together with the mass equivalent of the kinetic energy of
the bombarding particle (or photon), is always greater than the sum of the resulting masses.
The difference is the equivalent mass of the kinetic energy of the particles generated, or of
the released electromagnetic energy -photons). In the same way, the mass of a sponta-
neously disintegrating radioactive atom is always greater than the sum of the masses of the
resulting atoms by the mass equivalent of the kinetic energy of the particles generated (or of
the photonic energy). Measurements of the energy of the rays emitted in nuclear reactions,
in combination with the equations of such reactions, render it possible to evaluate atomic
weights to a high degree of accuracy.

R. W. L.

1g

E � mc 2
ga

E0

c2

E0
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S I X T E E N

EXPERIENCE AND THE SPECIAL

THEORY OF RELATIVITY
To what extent is the special theory of relativity supported by experi-
ence? This question is not easily answered for the reason already men-
tioned in connection with the fundamental experiment of Fizeau. The
special theory of relativity has crystallised out from the Maxwell-
Lorentz theory of electromagnetic phenomena. Thus all facts of expe-
rience which support the electromagnetic theory also support the theory
of relativity. As being of particular importance, I mention here the
fact that the theory of relativity enables us to predict the effects pro-
duced on the light reaching us from the fixed stars. These results are
obtained in an exceedingly simple manner, and the effects indicated,
which are due to the relative motion of the earth with reference to
those fixed stars, are found to be in accord with experience. We refer
to the yearly movement of the apparent position of the fixed stars
resulting from the motion of the earth round the sun (aberration), and
to the influence of the radial components of the relative motions of
the fixed stars with respect to the earth on the colour of the light
reaching us from them. The latter effect manifests itself in a slight dis-
placement of the spectral lines of the light transmitted to us from a
fixed star, as compared with the position of the same spectral lines
when they are produced by a terrestrial source of light (Doppler prin-
ciple). The experimental arguments in favour of the Maxwell-Lorentz
theory, which are at the same time arguments in favour of the theory
of relativity, are too numerous to be set forth here. In reality they limit
the theoretical possibilities to such an extent, that no other theory than
that of Maxwell and Lorentz has been able to hold its own when tested
by experience.

But there are two classes of experimental facts hitherto obtained
which can be represented in the Maxwell-Lorentz theory only by the
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introduction of an auxiliary hypothesis, which in itself—i.e. without
making use of the theory of relativity—appears extraneous.

It is known that cathode rays and the so-called -rays emitted by
radioactive substances consist of negatively electrified particles (elec-
trons) of very small inertia and large velocity. By examining the deflec-
tion of these rays under the influence of electric and magnetic fields, we
can study the law of motion of these particles very exactly.

In the theoretical treatment of these electrons, we are faced with
the difficulty that electrodynamic theory of itself is unable to give an
account of their nature. For since electrical masses of one sign repel
each other, the negative electrical masses constituting the electron
would necessarily be scattered under the influence of their mutual
repulsions, unless there are forces of another kind operating between
them, the nature of which has hitherto remained obscure to us.1 If we
now assume that the relative distances between the electrical masses
constituting the electron remain unchanged during the motion of the
electron (rigid connection in the sense of classical mechanics), we
arrive at a law of motion of the electron which does not agree with
experience. Guided by purely formal points of view, H. A. Lorentz
was the first to introduce the hypothesis that the form of the electron
experiences a contraction in the direction of motion in consequence of
that motion, the contracted length being proportional to the expression

This hypothesis, which is not justifiable by any electrody-

namical facts, supplies us then with that particular law of motion
which has been confirmed with great precision in recent years.

The theory of relativity leads to the same law of motion, without
requiring any special hypothesis whatsoever as to the structure and the
behaviour of the electron. We arrived at a similar conclusion of Sec-
tion 13 in connection with the experiment of Fizeau, the result of
which is foretold by the theory of relativity without the necessity of
drawing on hypotheses as to the physical nature of the liquid.

B1 �
v2

c2 .

b

1The general theory of relativity renders it likely that the electrical masses of an electron are held together by gravitational forces.
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The second class of facts to which we have alluded has reference
to the question whether or not the motion of the earth in space can
be made perceptible in terrestrial experiments. We have already
remarked in Section 5 that all attempts of this nature led to a nega-
tive result. Before the theory of relativity was put forward, it was dif-
ficult to become reconciled to this negative result, for reasons now to
be discussed. The inherited prejudices about time and space did not
allow any doubt to arise as to the prime importance of the Galileian
transformation for changing over from one body of reference to
another. Now assuming that the Maxwell-Lorentz equations hold for
a reference-body K, we then find that they do not hold for a refer-
ence-body moving uniformly with respect to K, if we assume
that the relations of the Galileian transformation exist between the co-
ordinates of K and It thus appears that, of all Galileian co-ordinate
systems, one (K ) corresponding to a particular state of motion is phys-
ically unique. This result was interpreted physically by regarding K as
at rest with respect to a hypothetical æther of space. On the other hand,
all co-ordinate systems moving relatively to K were to be regarded
as in motion with respect to the æther. To this motion of against
the æther (“æther-drift” relative to were attributed the more com-
plicated laws which were supposed to hold relative to Strictly speak-
ing, such an æther-drift ought also to be assumed relative to the earth,
and for a long time the efforts of physicists were devoted to attempts
to detect the existence of an æther-drift at the earth’s surface.

In one of the most notable of these attempts Michelson devised a
method which appears as though it must be decisive. Imagine two
mirrors so arranged on a rigid body that the reflecting surfaces face
each other. A ray of light requires a perfectly definite time T to pass
from one mirror to the other and back again, if the whole system be
at rest with respect to the æther. It is found by calculation, however,
that a slightly different time is required for this process, if the body,
together with the mirrors, be moving relatively to the æther. And yet
another point: it is shown by calculation that for a given velocity v
with reference to the æther, this time is different when the bodyT ¿

T ¿

K ¿.
K ¿ 2

K ¿
K ¿

K ¿.

K ¿
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is moving perpendicularly to the planes of the mirrors from that result-
ing when the motion is parallel to these planes. Although the esti-
mated difference between these two times is exceedingly small, Michelson
and Morley performed an experiment involving interference in which
this difference should have been clearly detectable. But the experiment
gave a negative result—a fact very perplexing to physicists. Lorentz
and FitzGerald rescued the theory from this difficulty by assuming
that the motion of the body relative to the æther produces a contrac-
tion of the body in the direction of motion, the amount of contraction
being just sufficient to compensate for the difference in time mentioned
above. Comparison with the discussion in Section 12 shows that also
from the standpoint of the theory of relativity this solution of the dif-
ficulty was the right one. But on the basis of the theory of relativity
the method of interpretation is incomparably more satisfactory.
According to this theory there is no such things as a “specially
favoured” (unique) co-ordinate system to occasion the introduction of
the æther-idea, and hence there can be no æther-drift, nor any exper-
iment with which to demonstrate it. Here the contraction of moving
bodies follows from the two fundamental principles of the theory,
without the introduction of particular hypotheses; and as the prime
factor involved in this contraction we find, not the motion in itself,
to which we cannot attach any meaning, but the motion with respect
to the body of reference chosen in the particular case in point. Thus
for a co-ordinate system moving with the earth the mirror system of
Michelson and Morley is not shortened, but it is shortened for a co-
ordinate system which is at rest relatively to the sun.
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S E V E N T E E N

MINKOWSKI’S FOUR-
DIMENSIONAL SPACE

The non-mathematician is seized by a mysterious shuddering when he
hears of “four-dimensional” things, by a feeling not unlike that awak-
ened by thoughts of the occult. And yet there is no more common-place
statement than that the world in which we live is a four-dimensional
space-time continuum.

Space is a three-dimensional continuum. By this we mean that it
is possible to describe the position of a point (at rest) by means of
three numbers (co-ordinates) x, y, z, and that there is an indefinite
number of points in the neighbourhood of this one, the position of
which can be described by co-ordinates such as which may
be as near as we choose to the respective values of the co-ordinates 
x, y, z of the first point. In virtue of the latter property we speak of a
“continuum,” and owing to the fact that there are three co-ordinates
we speak of it as being “three-dimensional.”

Similarly, the world of physical phenomena which was briefly
called “world” by Minkowski is naturally four-dimensional in the
space-time sense. For it is composed of individual events, each of
which is described by four numbers, namely, three space co-ordinates
x, y, z and a time co-ordinate, the time-value t. The “world” is in this
sense also a continuum; for to every event there are as many “neigh-
bouring” events (realised or at least thinkable) as we care to choose,
the coordinates of which differ by an indefinitely small
amount from those of the event x, y, z, t originally considered. That
we have not been accustomed to regard the world in this sense as a four-
dimensional continuum is due to the fact that in physics, before the
advent of the theory of relativity, time played a different and more inde-
pendent rôle, as compared with the space co-ordinates. It is for this rea-
son that we have been in the habit of treating time as an independent

x1, y1, z1, t1

x1, y1, z1,
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continuum. As a matter of fact, according to classical mechanics, time
is absolute, i.e. it is independent of the position and the condition of
motion of the system of co-ordinates. We see this expressed in the last
equation of the Galileian transformation 

The four-dimensional mode of consideration of the “world” is
natural on the theory of relativity, since according to this theory time
is robbed of its independence. This is shown by the fourth equation
of the Lorentz transformation:

Moreover, according to this equation the time difference of two
events with respect to does not in general vanish, even when the
time difference of the same events with reference to K vanishes.
Pure “space-distance” of two events with respect to K results in “time-
distance” of the same events with respect to But the discovery of
Minkowski, which was of importance for the formal development of
the theory of relativity, does not lie here. It is to be found rather in the
fact of his recognition that the four-dimensional space-time continuum
of the theory of relativity, in its most essential formal properties, shows
a pronounced relationship to the three-dimensional continuum of
Euclidean geometrical space.1 In order to give due prominence to this
relationship, however, we must replace the usual time co-ordinate t
by an imaginary magnitude ct proportional to it. Under these
conditions, the natural laws satisfying the demands of the (special) the-
ory of relativity assume mathematical forms, in which the time co-
ordinate plays exactly the same rôle as the three space co-ordinates.
Formally, these four co-ordinates correspond exactly to the three space
co-ordinates in Euclidean geometry. It must be clear even to the non-
mathematician that, as a consequence of this purely formal addition

1�1.

K ¿.

¢t
K ¿

¢t¿

t¿ �

t �
v
c2 x

B1 �
v2

c2

.

1t ¿ � t2.

1Cf. the somewhat more detailed discussion in Appendix 2 .       
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to our knowledge, the theory perforce gained clearness in no mean
measure.

These inadequate remarks can give the reader only a vague notion
of the important idea contributed by Minkowski. Without it the gen-
eral theory of relativity, of which the fundamental ideas are developed
in the following pages, would perhaps have got no farther than its
long clothes. Minkowski’s work is doubtless difficult of access to any-
one inexperienced in mathematics, but since it is not necessary to have
a very exact grasp of this work in order to understand the fundamental
ideas of either the special or the general theory of relativity, I shall leave
it here at present, and revert to it only towards the end of Part II.
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PART II: THE GENERAL
THEORY OF RELATIVITY

E I G H T E E N

SPECIAL AND GENERAL

PRINCIPLE OF RELATIVITY
The basal principle, which was the pivot of all our previous consider-
ations, was the special principle of relativity, i.e. the principle of the
physical relativity of all uniform motion. Let us once more analyse its
meaning carefully.

It was at all times clear that, from the point of view of the idea
it conveys to us, every motion must be considered only as a relative
motion. Returning to the illustration we have frequently used of the
embankment and the railway carriage, we can express the fact of
the motion here taking place in the following two forms, both of
which are equally justifiable:

(a) The carriage is in motion relative to the embankment.
(b) The embankment is in motion relative to the carriage.
In (a) the embankment, in (b) the carriage, serves as the body

of reference in our statement of the motion taking place. If it is sim-
ply a question of detecting or of describing the motion involved, it
is in principle immaterial to what reference-body we refer the
motion. As already mentioned, this is self-evident, but it must not
be confused with the much more comprehensive statement called
“the principle of relativity,” which we have taken as the basis of our
investigations.

The principle we have made use of not only maintains that we may
equally well choose the carriage or the embankment as our reference-
body for the description of any event (for this, too, is self-evident). Our
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principle rather asserts what follows: If we formulate the general laws
of nature as they are obtained from experience, by making use of

(a) the embankment as reference-body,
(b) the railway carriage as reference-body,

then these general laws of nature (e.g. the laws of mechanics or the
law of the propagation of light in vacuo) have exactly the same form
in both cases. This can also be expressed as follows: For the physical
description of natural processes, neither of the reference-bodies K,
is unique (lit. “specially marked out”) as compared with the other.
Unlike the first, this latter statement need not of necessity hold a pri-
ori; it is not contained in the conceptions of “motion” and “reference-
body” and derivable from them; only experience can decide as to its
correctness or incorrectness.

Up to the present, however, we have by no means maintained the
equivalence of all bodies of reference K in connection with the for-
mulation of natural laws. Our course was more on the following lines.
In the first place, we started out from the assumption that there exists
a reference-body K, whose condition of motion is such that the
Galileian law holds with respect to it: A particle left to itself and suf-
ficiently far removed from all other particles moves uniformly in a
straight line. With reference to K (Galileian reference-body) the laws
of nature were to be as simple as possible. But in addition to K, all
bodies of reference should be given preference in this sense, and
they should be exactly equivalent to K for the formulation of natural
laws, provided that they are in a state of uniform rectilinear and non-
rotary motion with respect to K; all these bodies of reference are to be
regarded as Galileian reference-bodies. The validity of the principle of
relativity was assumed only for these reference-bodies, but not for oth-
ers (e.g. those possessing motion of a different kind). In this sense we
speak of the special principle of relativity, or special theory of relativity.

In contrast to this we wish to understand by the “general princi-
ple of relativity” the following statement: All bodies of reference K,

etc., are equivalent for the description of natural phenomena (for-
mulation of the general laws of nature), whatever may be their state
K ¿,

K ¿

K ¿
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of motion. But before proceeding farther, it ought to be pointed out
that this formulation must be replaced later by a more abstract one,
for reasons which will become evident at a later stage.

Since the introduction of the special principle of relativity has been
justified, every intellect which strives after generalisation must feel the
temptation to venture the step towards the general principle of rela-
tivity. But a simple and apparently quite reliable consideration seems
to suggest that, for the present at any rate, there is little hope of suc-
cess in such an attempt. Let us imagine ourselves transferred to our
old friend the railway carriage, which is travelling at a uniform rate.
As long as it is moving uniformly, the occupant of the carriage is not
sensible of its motion, and it is for this reason that he can without
reluctance interpret the facts of the case as indicating that the carriage
is at rest, but the embankment in motion. Moreover, according to the
special principle of relativity, this interpretation is quite justified also
from a physical point of view.

If the motion of the carriage is now changed into a nonuniform
motion, as for instance by a powerful application of the brakes, then
the occupant of the carriage experiences a correspondingly powerful
jerk forwards. The retarded motion is manifested in the mechanical
behaviour of bodies relative to the person in the railway carriage. The
mechanical behaviour is different from that of the case previously con-
sidered, and for this reason it would appear to be impossible that the
same mechanical laws hold relatively to the non-uniformly moving
carriage, as hold with reference to the carriage when at rest or in uni-
form motion. At all events it is clear that the Galileian law does not
hold with respect to the non-uniformly moving carriage. Because of
this, we feel compelled at the present juncture to grant a kind of
absolute physical reality to non-uniform motion, in opposition to the
general principle of relativity. But in what follows we shall soon see
that this conclusion cannot be maintained.
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N I N E T E E N

THE GRAVITATIONAL FIELD
If we pick up a stone and then let it go, why does it fall to the ground?
The usual answer to this question is: “Because it is attracted by the
earth.” Modern physics formulates the answer rather differently for the
following reason. As a result of the more careful study of electromag-
netic phenomena, we have come to regard action at a distance as a
process impossible without the intervention of some intermediary
medium. If, for instance, a magnet attracts a piece of iron, we cannot
be content to regard this as meaning that the magnet acts directly on
the iron through the intermediate empty space, but we are constrained
to imagine—after the manner of Faraday—that the magnet always calls
into being something physically real in the space around it, that some-
thing being what we call a “magnetic field.” In its turn this magnetic
field operates on the piece of iron, so that the latter strives to move
towards the magnet. We shall not discuss here the justification for this
incidental conception, which is indeed a somewhat arbitrary one. We
shall only mention that with its aid electromagnetic phenomena can be
theoretically represented much more satisfactorily than without it, and
this applies particularly to the transmission of electromagnetic waves.
The effects of gravitation also are regarded in an analogous manner.

The action of the earth on the stone takes place indirectly. The
earth produces in its surroundings a gravitational field, which acts on
the stone and produces its motion of fall. As we know from experi-
ence, the intensity of the action on a body diminishes according to a
quite definite law, as we proceed farther and farther away from the
earth. From our point of view this means: The law governing the prop-
erties of the gravitational field in space must be a perfectly definite one,
in order correctly to represent the diminution of gravitational action
with the distance from operative bodies. It is something like this: The
body (e.g. the earth) produces a field in its immediate neighbourhood
directly; the intensity and direction of the field at points farther
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removed from the body are thence determined by the law which gov-
erns the properties in space of the gravitational fields themselves.

In contrast to electric and magnetic fields, the gravitational field
exhibits a most remarkable property, which is of fundamental importance
for what follows. Bodies which are moving under the sole influence of a
gravitational field receive an acceleration, which does not in the least depend
either on the material or on the physical state of the body. For instance, a
piece of lead and a piece of wood fall in exactly the same manner in a
gravitational field (in vacuo), when they start off from rest or with the
same initial velocity. This law, which holds most accurately, can be
expressed in a different form in the light of the following consideration.

According to Newton’s law of motion, we have

where the “inertial mass” is a characteristic constant of the accelerated
body. If now gravitation is the cause of the acceleration, we then have

where the “gravitational mass” is likewise a characteristic constant for
the body. From these two relations follows:

If now, as we find from experience, the acceleration is to be inde-
pendent of the nature and the condition of the body and always the same
for a given gravitational field, then the ratio of the gravitational to the
inertial mass must likewise be the same for all bodies. By a suitable choice
of units we can thus make this ratio equal to unity. We then have the fol-
lowing law: The gravitational mass of a body is equal to its inertial mass.

It is true that this important law had hitherto been recorded in
mechanics, but it had not been interpreted. A satisfactory interpretation
can be obtained only if we recognise the following fact: The same qual-
ity of a body manifests itself according to circumstances as “inertia” or
as “weight” (lit. “heaviness”). In the following section we shall show to
what extent this is actually the case, and how this question is con-
nected with the general postulate of relativity.

1acceleration2�
1gravitational mass2

1inertial mass2
 1intensity of the gravitational field 2.

1Force2 � 1gravitational mass2 � 1intensity of the gravitational field2,

1Force2 � 1inertial mass2 � 1acceleration2,
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T W E N T Y

THE EQUALITY OF INERTIAL

AND GRAVITATIONAL MASS AS

AN ARGUMENT FOR THE

GENERAL POSTULATE

OF RELATIVITY
We imagine a large portion of empty space, so far removed from stars
and other appreciable masses, that we have before us approximately
the conditions required by the fundamental law of Galilei. It is then
possible to choose a Galileian reference-body for this part of space
(world), relative to which points at rest remain at rest and points in
motion continue permanently in uniform rectilinear motion. As
reference-body let us imagine a spacious chest resembling a room with
an observer inside who is equipped with apparatus. Gravitation natu-
rally does not exist for this observer. He must fasten himself with
strings to the floor, otherwise the slightest impact against the floor will
cause him to rise slowly towards the ceiling of the room.

To the middle of the lid of the chest is fixed externally a hook
with rope attached, and now a “being” (what kind of a being is imma-
terial to us) begins pulling at this with a constant force. The chest
together with the observer then begins to move “upwards” with a uni-
formly accelerated motion. In course of time their velocity will reach
unheard-of values—provided that we are viewing all this from another
reference-body which is not being pulled with a rope.

But how does the man in the chest regard the process? The accel-
eration of the chest will be transmitted to him by the reaction of the
floor of the chest. He must therefore take up this pressure by means
of his legs if he does not wish to be laid out full length on the floor.
He is then standing in the chest in exactly the same way as anyone
stands in a room of a house on our earth. If he releases a body which
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he previously had in his hand, the acceleration of the chest will no
longer be transmitted to this body, and for this reason the body will
approach the floor of the chest with an accelerated relative motion.
The observer will further convince himself that the acceleration of the
body towards the floor of the chest is a/ways of the same magnitude, what-
ever kind of body he may happen to use for the experiment.

Relying on his knowledge of the gravitational field (as it was dis-
cussed in the preceding section), the man in the chest will thus come
to the conclusion that he and the chest are in a gravitational field
which is constant with regard to time. Of course he will be puzzled
for a moment as to why the chest does not fall in this gravitational
field. Just then, however, he discovers the hook in the middle of the
lid of the chest and the rope which is attached to it, and he conse-
quently comes to the conclusion that the chest is suspended at rest in
the gravitational field.

Ought we to smile at the man and say that he errs in his con-
clusion? I do not believe we ought to if we wish to remain consistent;
we must rather admit that his mode of grasping the situation violates
neither reason nor known mechanical laws. Even though it is being
accelerated with respect to the “Galileian space” first considered, we
can nevertheless regard the chest as being at rest. We have thus good
grounds for extending the principle of relativity to include bodies of
reference which are accelerated with respect to each other, and as a
result we have gained a powerful argument for a generalised postulate
of relativity.

We must note carefully that the possibility of this mode of inter-
pretation rests on the fundamental property of the gravitational field
of giving all bodies the same acceleration, or, what comes to the same
thing, on the law of the equality of inertial and gravitational mass. If
this natural law did not exist, the man in the accelerated chest would
not be able to interpret the behaviour of the bodies around him on
the supposition of a gravitational field, and he would not be justified
on the grounds of experience in supposing his reference-body to be
“at rest.”
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Suppose that the man in the chest fixes a rope to the inner side of
the lid, and that he attaches a body to the free end of the rope. The
result of this will be to stretch the rope so that it will hang “vertically”
downwards. If we ask for an opinion of the cause of tension in the
rope, the man in the chest will say: “The suspended body experiences
a downward force in the gravitational field, and this is neutralised by
the tension of the rope; what determines the magnitude of the tension
of the rope is the gravitational mass of the suspended body.” On
the other hand, an observer who is poised freely in space will interpret
the condition of things thus: “The rope must perforce take part in the
accelerated motion of the chest, and it transmits this motion to the
body attached to it. The tension of the rope is just large enough to
effect the acceleration of the body. That which determines the magni-
tude of the tension of the rope is the inertia/ mass of the body.” Guided
by this example, we see that our extension of the principle of relativ-
ity implies the necessity of the law of the equality of inertial and
gravitational mass. Thus we have obtained a physical interpretation of
this law.

From our consideration of the accelerated chest we see that a gen-
eral theory of relativity must yield important results on the laws of
gravitation. In point of fact, the systematic pursuit of the general idea
of relativity has supplied the laws satisfied by the gravitational field.
Before proceeding farther, however, I must warn the reader against a
misconception suggested by these considerations. A gravitational field
exists for the man in the chest, despite the fact that there was no such
field for the co-ordinate system first chosen. Now we might easily
suppose that the existence of a gravitational field is always only an
apparent one. We might also think that, regardless of the kind of grav-
itational field which may be present, we could always choose another
reference-body such that no gravitational field exists with reference to
it. This is by no means true for all gravitational fields, but only for
those of quite special form. It is, for instance, impossible to choose a
body of reference such that, as judged from it, the gravitational field
of the earth (in its entirety) vanishes.
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We can now appreciate why that argument is not convincing,
which we brought forward against the general principle of relativity at
the end of Section 18. It is certainly true that the observer in the rail-
way carriage experiences a jerk forwards as a result of the application
of the brake, and that he recognises in this the non-uniformity of
motion (retardation) of the carriage. But he is compelled by nobody
to refer this jerk to a “real” acceleration (retardation) of the carriage.
He might also interpret his experience, thus: “My body of reference
(the carriage) remains permanently at rest. With reference to it, how-
ever, there exists (during the period of application of the brakes) a
gravitational field which is directed forwards and which is variable
with respect to time. Under the influence of this field, the embank-
ment together with the earth moves nonuniformly in such a manner
that their original velocity in the backwards direction is continuously
reduced.”
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T W E N T Y - O N E

IN WHAT RESPECTS ARE THE

FOUNDATIONS OF CLASSICAL

MECHANICS AND OF THE

SPECIAL THEORY OF

RELATIVITY UNSATISFACTORY?
We have already stated several times that classical mechanics starts out
from the following law: Material particles sufficiently far removed
from other material particles continue to move uniformly in a straight
line or continue in a state of rest. We have also repeatedly emphasised
that this fundamental law can only be valid for bodies of reference K
which possess certain unique states of motion, and which are in uni-
form translational motion relative to each other. Relative to other ref-
erence-bodies K the law is not valid. Both in classical mechanics and
in the special theory of relativity we therefore differentiate between
reference-bodies K relative to which the recognised “laws of nature”
can be said to hold, and reference-bodies K relative to which these
laws do not hold.

But no person whose mode of thought is logical can rest satisfied
with this condition of things. He asks: “How does it come that cer-
tain reference-bodies (or their states of motion) are given priority over
other reference-bodies (or their states of motion)?” What is the reason
for this preference ? In order to show clearly what I mean by this ques-
tion, I shall make use of a comparison.

I am standing in front of a gas range. Standing alongside of each
other on the range are two pans so much alike that one may be mis-
taken for the other. Both are half full of water. I notice that steam is
being emitted continuously from the one pan, but not from the other.
I am surprised at this, even if I have never seen either a gas range or
a pan before. But if I now notice a luminous something of bluish
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colour under the first pan but not under the other, I cease to be aston-
ished, even if I have never before seen a gas flame. For I can only say
that this bluish something will cause the emission of the stream, or at
least possibly it may do so. If, however, I notice the bluish something
in neither case, and if I observe that the one continuously emits steam
whilst the other does not, then I shall remain astonished and dissat-
isfied until I have discovered some circumstance to which I can attrib-
ute the different behaviour of the two pans.

Analogously, I seek in vain for a real something in classical
mechanics (or in the special theory of relativity) to which I can attrib-
ute the different behaviour of bodies considered with respect to the
reference-systems K and 1 Newton saw this objection and
attempted to invalidate it, but without success. But E. Mach recog-
nised it most clearly of all, and because of this objection he claimed
that mechanics must be placed on a new basis. It can only be got rid
of by means of a physics which is comformable to the general prin-
ciple of relativity, since the equations of such a theory hold for every
body of reference, whatever may be its state of motion.

K ¿.

1The objection is of importance more especially when the state of motion of the reference-body is of such a nature that it does not
require any external agency for its maintenance, e.g. in the case when the reference-body is rotating uniformly.         
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T W E N T Y - T W O

A FEW INFERENCES FROM

THE GENERAL PRINCIPLE

OF RELATIVITY
The considerations of Section 20 show that the general principle of
relativity puts us in a position to derive properties of the gravitational
field in a purely theoretical manner. Let us suppose, for instance, that
we know the space-time “course” for any natural process whatsoever,
as regards the manner in which it takes place in the Galileian domain
relative to a Galileian body of reference K. By means of purely theo-
retical operations (i.e. simply by calculation) we are then able to find
how this known natural process appears, as seen from a reference-
body which is accelerated relatively to K. But since a gravitational
field exists with respect to this new body of reference our con-
sideration also teaches us how the gravitational field influences the
process studied.

For example, we learn that a body which is in a state of uniform
rectilinear motion with respect to K (in accordance with the law of
Gelilei) is executing an accelerated and in general curvilinear motion
with respect to the accelerated reference-body (chest). This accel-
eration or curvature corresponds to the influence on the moving body
of the gravitational field prevailing relatively to It is known that
a gravitational field influences the movement of bodies in this way, so
that our consideration supplies us with nothing essentially new.

However, we obtain a new result of fundamental importance when
we carry out the analogous consideration for a ray of light. With
respect to the Galileian reference-body K, such a ray of light is trans-
mitted rectilinearly with the velocity c. It can easily be shown that the
path of the same ray of light is no longer a straight line when we con-
sider it with reference to the accelerated chest (reference-body ).
From this we conclude, that, in general, rays of light are propagated

K ¿

K ¿.

K ¿

K ¿
K ¿
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curvilinearly in gravitational fields. In two respects this result is of great
importance.

In the first place, it can be compared with the reality. Although a
detailed examination of the question shows that the curvature of light
rays required by the general theory of relativity is only exceedingly
small for the gravitational fields at our disposal in practice, its esti-
mated magnitude for light rays passing the sun at grazing incidence is
nevertheless 1.7 seconds of arc. This ought to manifest itself in the
following way. As seen from the earth, certain fixed stars appear to be
in the neighbourhood of the sun, and are thus capable of observation
during a total eclipse of the sun. At such times, these stars ought to
appear to be displaced outwards from the sun by an amount indicated
above, as compared with their apparent position in the sky when the
sun is situated at another part of the heavens. The examination of the
correctness or otherwise of this deduction is a problem of the great-
est importance, the early solution of which is to be expected of
astronomers.1

In the second place our result shows that, according to the gen-
eral theory of relativity, the law of the constancy of the velocity of
light in vacuo, which constitutes one of the two fundamental assump-
tions in the special theory of relativity and to which we have already
frequently referred, cannot claim any unlimited validity. A curvature
of rays of light can only take place when the velocity of propagation
of light varies with position. Now we might think that as a conse-
quence of this, the special theory of relativity and with it the whole
theory of relativity would be laid in the dust. But in reality this is not
the case. We can only conclude that the special theory of relativity
cannot claim an unlimited domain of validity; its results hold only so
long as we are able to disregard the influences of gravitational fields
on the phenomena (e.g. of light).

Since it has often been contended by opponents of the theory of rel-
ativity that the special theory of relativity is overthrown by the general

1By means of the star photographs of two expeditions equipped by a Joint Committee of the Royal and Royal Astronomical
Societies, the existence of the deflection of light demanded by theory was first confirmed during the solar eclipse of 29th May, 1919. 
(Cr. Appendix 3.)     
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theory of relativity, it is perhaps advisable to make the facts of the case
clearer by means of an appropriate comparison. Before the develop-
ment of electrodynamics the laws of electrostatics were looked upon
as the laws of electricity. At the present time we know that electric
fields can be derived correctly from electrostatic considerations only
for the case, which is never strictly realised, in which the electrical masses
are quite at rest relatively to each other, and to the co-ordinate system.
Should we be justified in saying that for this reason electrostatics is over-
thrown by the field-equations of Maxwell in electrodynamics? Not in
the least. Electrostatics is contained in electrodynamics as a limiting
case; the laws of the latter lead directly to those of the former for the
case in which the fields are invariable with regard to time. No fairer
destiny could be allotted to any physical theory, than that it should
of itself point out the way to the introduction of a more comprehen-
sive theory, in which it lives on as a limiting case.

In the example of the transmission of light just dealt with, we have
seen that the general theory of relativity enables us to derive theoret-
ically the influence of a gravitational field on the course of natural
processes, the laws of which are already known when a gravitational
field is absent. But the most attractive problem, to the solution of
which the general theory of relativity supplies the key, concerns the
investigation of the laws satisfied by the gravitational field itself. Let
us consider this for a moment.

We are acquainted with space-time domains which behave
(approximately) in a “Galileian” fashion under suitable choice of ref-
erence-body, i.e. domains in which gravitational fields are absent. If
we now refer such a domain to a reference-body possessing any
kind of motion, then relative to there exists a gravitational field
which is variable with respect to space and time.1 The character of this
field will of course depend on the motion chosen for According
to the general theory of relativity, the general law of the gravitational
field must be satisfied for all gravitational fields obtainable in this way.

K ¿.

K ¿
K ¿

1This follows from a generalisation of the discussion in Section 20.       
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Even though by no means all gravitational fields can be produced in
this way, yet we may entertain the hope that the general law of grav-
itation will be derivable from such gravitational fields of a special kind.
This hope has been realised in the most beautiful manner. But between
the clear vision of this goal and its actual realisation it was necessary to
surmount a serious difficulty, and as this lies deep at the root of things,
I dare not withhold it from the reader. We require to extend our ideas
of the space-time continuum still farther.
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T W E N T Y - T H R E E

BEHAVIOUR OF CLOCKS

AND MEASURING-RODS ON

A ROTATING BODY

OF REFERENCE
Hitherto I have purposely refrained from speaking about the physical
interpretation of space- and time-data in the case of the general the-
ory of relativity. As a consequence, I am guilty of a certain slovenliness
of treatment, which, as we know from the special theory of relativity,
is far from being unimportant and pardonable. It is now high time that
we remedy this defect; but I would mention at the outset, that this mat-
ter lays no small claims on the patience and on the power of abstraction
of the reader.

We start off again from quite special cases, which we have fre-
quently used before. Let us consider a space-time domain in which no
gravitational field exists relative to a reference-body K whose state of
motion has been suitably chosen. K is then a Galileian reference-body
as regards the domain considered, and the results of the special the-
ory of relativity hold relative to K . Let us suppose the same domain
referred to a second body of reference , which is rotating uniformly
with respect to K. In order to fix our ideas, we shall imagine to
be in the form of a plane circular disc, which rotates uniformly in its
own plane about its centre. An observer who is sitting eccentrically on
the disc is sensible of a force which acts outwards in a radial direc-
tion, and which would be interpreted as an effect of inertia (centrifu-
gal force) by an observer who was at rest with respect to the original
reference-body K. But the observer on the disc may regard his disc as a
reference-body which is “at rest”; on the basis of the general principle
of relativity he is justified in doing this. The force acting on himself,
and in fact on all other bodies which are at rest relative to the disc,

K ¿

K ¿
K ¿
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he regards as the effect of a gravitational field. Nevertheless, the space-
distribution of this gravitational field is of a kind that would not be
possible on Newton’s theory of gravitation.1 But since the observer
believes in the general theory of relativity, this does not disturb him;
he is quite in the right when he believes that a general law of gravita-
tion can be formulated—a law which not only explains the motion of
the stars correctly, but also the field of force experienced by himself.

The observer performs experiments on his circular disc with clocks
and measuring-rods. In doing so, it is his intention to arrive at exact
definitions for the signification of time- and space-data with reference
to the circular disc these definitions being based on his observa-
tions. What will be his experience in this enterprise?

To start with, he places one of two identically constructed clocks
at the centre of the circular disc, and the other on the edge of the
disc, so that they are at rest relative to it. We now ask ourselves
whether both clocks go at the same rate from the standpoint of the
non-rotating Galileian reference-body K. As judged from this body,
the clock at the centre of the disc has no velocity, whereas the clock
at the edge of the disc is in motion relative to K in consequence of
the rotation. According to a result obtained in Section 12, it follows
that the latter clock goes at a rate permanently slower than that of the
clock at the centre of the circular disc, i.e. as observed from K. It is
obvious that the same effect would be noted by an observer whom we
will imagine sitting alongside his clock at the centre of the circular
disc. Thus on our circular disc, or, to make the case more general, in
every gravitational field, a clock will go more quickly or less quickly,
according to the position in which the clock is situated (at rest). For
this reason it is not possible to obtain a reasonable definition of time
with the aid of clocks which are arranged at rest with respect to the
body of reference. A similar difficulty presents itself when we attempt
to apply our earlier definition of simultaneity in such a case, but I do
not wish to go any farther into this question. 

K ¿,

1The field disappears at the centre of the disc and increases proportionally to the distance from the centre as we proceed outwards.    
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Moreover, at this stage the definition of the space coordinates also
presents insurmountable difficulties. If the observer applies his stan-
dard measuring-rod (a rod which is short as compared with the radius
of the disc) tangentially to the edge of the disc, then, as judged from
the Galileian system, the length of this rod will be less than 1, since,
according to Section 12, moving bodies suffer a shortening in the
direction of the motion. On the other hand, the measuring-rod will
not experience a shortening in length, as judged from K, if it is applied
to the disc in the direction of the radius. If, then, the observer first
measures the circumference of the disc with his measuring-rod and
then the diameter of the disc, on dividing the one by the other, he
will not obtain as quotient the familiar number but a
larger number,1 whereas of course, for a disc which is at rest with
respect to K, this operation would yield exactly. This proves that
the propositions of Euclidean geometry cannot hold exactly on the
rotating disc, nor in general in a gravitational field, at least if we
attribute the length 1 to the rod in all positions and in every orien-
tation. Hence the idea of a straight line also loses its meaning. We are
therefore not in a position to define exactly the co-ordinates x, y, z
relative to the disc by means of the method used in discussing the spe-
cial theory, and as long as the co-ordinates and times of events have
not been defined, we cannot assign an exact meaning to the natural
laws in which these occur.

Thus all our previous conclusions based on general relativity would
appear to be called in question. In reality we must make a subtle detour
in order to be able to apply the postulate of general relativity exactly.
I shall prepare the reader for this in the following paragraphs.

p

p � 3.14 . . . ,

1Throughout this consideration we have to use the Galileian (non-rotating) system K as reference-body, since we may only assume
the validity of the results of the special theory of relativity relative to K (relative to a gravitational field prevails).       K ¿
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T W E N T Y - F O U R

EUCLIDEAN AND NON-
EUCLIDEAN CONTINUUM

The surface of a marble table is spread out in front of me. I can get
from any one point on this table to any other point by passing con-
tinuously from one point to a “neighbouring” one, and repeating this
process a (large) number of times, or, in other words, by going from
point to point without executing “jumps.” I am sure the reader will
appreciate with sufficient clearness what I mean here by “neighbour-
ing” and by “jumps” (if he is not too pedantic). We express this prop-
erty of the surface by describing the latter as a continuum.

Let us now imagine that a large number of little rods of equal
length have been made, their lengths being small compared with the
dimensions of the marble slab. When I say they are of equal length,
I mean that one can be laid on any other without the ends overlap-
ping. We next lay four of these little rods on the marble slab so that
they constitute a quadrilateral figure (a square), the diagonals of which
are equally long. To ensure the equality of the diagonals, we make use
of a little testing-rod. To this square we add similar ones, each of which
has one rod in common with the first. We proceed in like manner
with each of these squares until finally the whole marble slab is laid
out with squares. The arrangement is such, that each side of a square
belongs to two squares and each corner to four squares.

It is a veritable wonder that we can carry out this business with-
out getting into the greatest difficulties. We only need to think of the
following. If at any moment three squares meet at a corner, then two
sides of the fourth square are already laid, and, as a consequence, the
arrangement of the remaining two sides of the square is already com-
pletely determined. But I am now no longer able to adjust the quadri-
lateral so that its diagonals may be equal. If they are equal of their
own accord, then this is an especial favour of the marble slab and of
the little rods, about which I can only be thankfully surprised. We
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must needs experience many such surprises if the construction is to
be successful.

If everything has really gone smoothly, then I say that the points
of the marble slab constitute a Euclidean continuum with respect to
the little rod, which has been used as a “distance” (line-interval). By
choosing one corner of a square as “origin,” I can characterize every
other corner of a square with reference to this origin by means of two
numbers. I only need state how many rods I must pass over when,
starting from the origin, I proceed towards the “right” and then
“upwards,” in order to arrive at the corner of the square under con-
sideration. These two numbers are then the “Cartesian co-ordinates”
of this corner with reference to the “Cartesian co-ordinate system”
which is determined by the arrangement of little rods.

By making use of the following modification of this abstract exper-
iment, we recognise that there must also be cases in which the experi-
ment would be unsuccessful. We shall suppose that the rods “expand”
by an amount proportional to the increase of temperature. We heat the
central part of the marble slab, but not the periphery, in which case two
of our little rods can still be brought into coincidence at every position
on the table. But our construction of squares must necessarily come into
disorder during the heating, because the little rods on the central region
of the table expand, whereas those on the outer part do not.

With reference to our little rods—defined as unit lengths—the
marble slab is no longer a Euclidean continuum, and we are also no
longer in the position of defining Cartesian coordinates directly with
their aid, since the above construction can no longer be carried out.
But since there are other things which are not influenced in a similar
manner to the little rods (or perhaps not at all) by the temperature of
the table, it is possible quite naturally to maintain the point of view
that the marble slab is a “Euclidean continuum.” This can be done in
a satisfactory manner by making a more subtle stipulation about the
measurement or the comparison of lengths.

But if rods of every kind (i.e. of every material) were to behave in
the same way as regards the influence of temperature when they are
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on the variably heated marble slab, and if we had no other means of
detecting the effect of temperature than the geometrical behaviour of
our rods in experiments analogous to the one described above, then
our best plan would be to assign the distance one to two points on
the slab, provided that the ends of one of our rods could be made to
coincide with these two points; for how else should we define the dis-
tance without our proceeding being in the highest measure grossly
arbitrary? The method of Cartesian co-ordinates must then be dis-
carded, and replaced by another which does not assume the validity
of Euclidean geometry for rigid bodies.1 The reader will notice that
the situation depicted here corresponds to the one brought about by
the general postulate of relativity (Section 23).

1Mathematicians have been confronted with our problem in the following form. If we are given a surface (e.g. an ellipsoid) in Eu-
clidean three-dimensional space, then there exists for this surface a two-dimensional geometry, just as much as for a plane surface. Gauss
undertook the task of treating this two-dimensional geometry from first principles, without making use of the fact that the surface belongs
to a Euclidean continuum of three dimensions. If we imagine constructions to be made with rigid rods in the surface (similar to that above
with the marble slab), we should find that different laws hold for these from those resulting on the basis of Euclidean plane geometry. The
surface is not a Euclidean continuum with respect to the rods, and we cannot define Cartesian co-ordinates in the surface. Gauss indicated
the principles according to which we can treat the geometrical relationships in the surface, and thus pointed out the way to the method
of Ricmann of treating multi-dimensional, non-Euclidean continua. Thus it is that mathematicians long ago solved the formal problems
to which we are led by the general postulate of relativity.



195

A STUBBORNLY PERSISTENT ILLUSION

T W E N T Y - F I V E

GAUSSIAN CO-ORDINATES
According to Gauss, this combined analytical and geometrical mode
of handling the problem can be arrived at in the following way. We
imagine a system of arbitrary curves (see Fig. 4) drawn on the surface
of the table.

FIG. 4.

These we designate as u-curves, and we indicate each of them by
means of a number. The curves and are drawn
in the diagram. Between the curves and we must imag-
ine an infinitely large number to be drawn, all of which correspond
to real numbers lying between 1 and 2. We have then a system of 
u-curves, and this “infinitely dense” system covers the whole surface of
the table. These u-curves must not intersect each other, and through
each point of the surface one and only one curve must pass. Thus a
perfectly definite value of u belongs to every point on the surface of
the marble slab. In like manner we imagine a system of v-curves
drawn on the surface. These satisfy the same conditions as the 
u-curves, they are provided with numbers in a corresponding manner,
and they may likewise be of arbitrary shape. It follows that a value
of u and a value of v belong to every point on the surface of the
table. We call these two numbers the co-ordinates of the surface of
the table (Gaussian co-ordinates). For example, the point P in the
diagram has the Gaussian co-ordinates Two neigh-
bouring points P and on the surface then correspond to the co-
ordinates

P ¿
u � 3, v � 1.

u � 2u � 1
u � 3u � 1, u � 2
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P: u, v
P�:

where du and dv signify very small numbers. In a similar manner we
may indicate the distance (line-interval) between P and as meas-
ured with a little rod, by means of the very small number ds. Then
according to Gauss we have

where are magnitudes which depend in a perfectly defi-
nite way to u and v. The magnitudes and determine the
behaviour of the rods relative to the u-curves and v-curves, and thus
also relative to the surface of the table. For the case in which the points
of the surface considered form a Euclidean continuum with reference
to the measuring-rods, but only in this case, it is possible to draw the
u-curves and v-curves and to attach numbers to them, in such a man-
ner, that we simply have:

Under these conditions, the u-curves and v-curves are straight lines in
the sense of Euclidean geometry, and they are perpendicular to each
other. Here the Gaussian co-ordinates are simply Cartesian ones. It is
clear that Gauss co-ordinates are nothing more than an association of
two sets of numbers with the points of the surface considered, of such
a nature that numerical values differing very slightly from each other
are associated with neighbouring points “in space.”

So far, these considerations hold for a continuum of two dimen-
sions. But the Gaussian method can be applied also to a continuum
of three, four or more dimensions. If, for instance, a continuum of
four dimensions be supposed available, we may represent it in the fol-
lowing way. With every point of the continuum we associate arbitrar-
ily four numbers, which are known as “co-ordinates.”
Adjacent points correspond to adjacent values of the co-ordinates. If
a distance ds is associated with the adjacent points P and this dis-
tance being measurable and well-defined from a physical point of view,
then the following formula holds:

ds2 � g11dx 2
1 � 2g12dx1dx2 . . . . � g44dx 2

4 ,

P¿,

x1, x2, x3, x4,

ds2 � du2 � dv2.

g22g11, g12

g11, g12, g22,
ds2 � g11du2 � 2g12dudv � g22dv2,

P¿,

u � du, v � dv,
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where the magnitudes etc., have values which vary with the posi-
tion in the continuum. Only when the continuum is a Euclidean one
is it possible to associate the co-ordinates with the points of
the continuum so that we have simply

In this case relations hold in the four-dimensional continuum which
are analogous to those holding in our three-dimensional measure-
ments.

However, the Gauss treatment for which we have given above
is not always possible. It is only possible when sufficiently small
regions of the continuum under consideration may be regarded as
Euclidean continua. For example, this obviously holds in the case of
the marble slab of the table and local variation of temperature. The
temperature is practically constant for a small part of the slab, and
thus the geometrical behaviour of the rods is almost as it ought to be
according to the rules of Euclidean geometry. Hence the imperfections
of the construction of squares in the previous section do not show
themselves clearly until this construction is extended over a consider-
able portion of the surface of the table.

We can sum this up as follows: Gauss invented a method for the
mathematical treatment of continua in general, in which “size-
relations” (“distances” between neighbouring points) are defined. To
every point of a continuum are assigned as many numbers (Gaussian
co-ordinates) as the continuum has dimensions. This is done in such
a way, that only one meaning can be attached to the assignment, and
that numbers (Gaussian co-ordinates) which differ by an indefinitely
small amount are assigned to adjacent points. The Gaussian co-
ordinate system is a logical generalisation of the Cartesian co-ordinate
system. It is also applicable to non-Euclidean continua, but only when,
with respect to the defined “size” or “distance,” small parts of the con-
tinuum under consideration behave more nearly like a Euclidean sys-
tem, the smaller the part of the continuum under our notice.

ds2

ds2 � dx 2
1 � dx 2

2 � dx 2
3 � dx 2

4 .

x1 p x4

g11,
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T W E N T Y - S I X

THE SPACE-TIME CONTINUUM

OF THE SPECIAL THEORY OF

RELATIVITY CONSIDERED AS A

EUCLIDEAN CONTINUUM
We are now in a position to formulate more exactly the the idea of
Minkowski, which was only vaguely indicated in Section 17. In accor-
dance with the special theory of relativity, certain co-ordinate systems are
given preference for the description of the four-dimensional, space-time
continuum. We called these “Galileian co-ordinate systems.” For these
systems, the four co-ordinates x, y, z, t, which determine an event or—
in other words—a point of the four-dimensional continuum, are defined
physically in a simple manner, as set forth in detail in the first part of
this book. For the transition from one Galileian system to another, which
is moving uniformly with reference to the first, the equations of the
Lorentz transformation are valid. These last form the basis for the deri-
vation of deductions from the special theory of relativity, and in them-
selves they are nothing more than the expression of the universal validity
of the law of transmission of light for all Galileian systems of reference.

Minkowski found that the Lorentz transformations satisfy the fol-
lowing simple conditions. Let us consider two neighbouring events, the
relative position of which in the four-dimensional continuum is given
with respect to a Galileian reference-body K by the space co-ordinate
differences dx, dy, dz and the time-difference dt. With reference to a
second Galileian system we shall suppose that the corresponding dif-
ferences for these two events are Then these magni-
tudes always fulfil the condition1

dx 2 � dy2 � dz2 � c2dt 2 � dx¿2 � dy¿2 � dz¿2 � c2dt¿2.

dx¿, dy¿, dz¿, dt¿.

1Cf. Appendices 1 and 2. The relations which are derived there for the co-ordinates themselves are valid also for co-ordinate differ-
ences, and thus also for co-ordinate differentials (indefinitely small differences).
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The validity of the Lorentz transformation follows from this con-
dition. We can express this as follows: The magnitude

which belongs to two adjacent points of the four-dimensional space-
time continuum, has the same value for all selected (Galileian) refer-
ence-bodies. If we replace by we also
obtain the result that

is independent of the choice of the body of reference. We call the mag-
nitude ds the “distance” apart of the two events or four-dimensional
points.

Thus, if we choose as time-variable the imaginary variable 
instead of the real quantity t, we can regard the spacetime continuum—
in accordance with the special theory of relativity—as a “Euclidean”
four-dimensional continuum, a result which follows from the consid-
erations of the preceding section.

1�1 ct

ds2 � dx 2
1 � dx 2

2 � dx 2
3 � dx 2

4

x1, x2, x3, x4,x, y, z 1�1 ct,

ds2 � dx2 � dy2 � dz2 � c2dt2,
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T W E N T Y - S E V E N

THE SPACE-TIME CONTINUUM

OF THE GENERAL THEORY

OF RELATIVITY IS NOT A

EUCLIDEAN CONTINUUM
In the first part of this book we were able to make use of space-time
co-ordinates which allowed of a simple and direct physical interpreta-
tion, and which, according to Section 26, can be regarded as four-
dimensional Cartesian co-ordinates. This was possible on the basis of
the law of the constancy of the velocity of light. But according to Sec-
tion 21, the general theory of relativity cannot retain this law. On the
contrary, we arrived at the result that according to this latter theory
the velocity of light must always depend on the coordinates when a
gravitational field is present. In connection with a specific illustration
in Section 23, we found that the presence of a gravitational field inval-
idates the definition of the co-ordinates and the time, which led us to
our objective in the special theory of relativity.

In view of the results of these considerations we are led to the
conviction that, according to the general principle of relativity, the
space-time continuum cannot be regarded as a Euclidean one, but
that here we have the general case, corresponding to the marble slab
with local variations of temperature, and with which we made
acquaintance as an example of a two-dimensional continuum. Just
as it was there impossible to construct a Cartesian co-ordinate sys-
tem from equal rods, so here it is impossible to build up a system
(reference-body) from rigid bodies and clocks, which shall be of such
a nature that measuring-rods and clocks, arranged rigidly with
respect to one another, shall indicate position and time directly. Such
was the essence of the difficulty with which we were confronted in
Section 23.
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But the considerations of Sections 25 and 26 show us the way to
surmount this difficulty. We refer the four-dimensional space-time
continuum in an arbitrary manner to Gauss co-ordinates. We assign
to every point of the continuum (event) four numbers, 
(co-ordinates), which have not the least direct physical significance,
but only serve the purpose of numbering the points of the continuum
in a definite but arbitrary manner. This arrangement does not even
need to be of such a kind that we must regard as “space” co-
ordinates and as a “time” co-ordinate.

The reader may think that such a description of the world would
be quite inadequate. What does it mean to assign to an event the par-
ticular co-ordinates if in themselves these co-ordinates
have no significance? More careful consideration shows, however, that
this anxiety is unfounded. Let us consider, for instance, a material
point with any kind of motion. If this point had only a momentary
existence without duration, then it would be described in space-time
by a single system of values Thus its permanent existence
must be characterised by an infinitely large number of such systems
of values, the co-ordinate values of which are so close together as to
give continuity; corresponding to the material point, we thus have a
(uni-dimensional) line in the four-dimensional continuum. In the
same way, any such lines in our continuum correspond to many points
in motion. The only statements having regard to these points which
can claim a physical existence are in reality the statements about their
encounters. In our mathematical treatment, such an encounter is
expressed in the fact that the two lines which represent the motions
of the points in question have a particular system of co-ordinate val-
ues, in common. After mature consideration the reader
will doubtless admit that in reality such encounters constitute the only
actual evidence of a time-space nature with which we meet in physi-
cal statements.

When we were describing the motion of a material point relative
to a body of reference, we stated nothing more than the encounters
of this point with particular points of the reference-body. We can also

x1, x2, x3, x4,

x1, x2, x3, x4.

x1, x2, x3, x4,

x4

x1, x2, x3

x1, x2, x3, x4
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determine the corresponding values of the time by the observation of
encounters of the body with clocks, in conjunction with the observa-
tion of the encounter of the hands of clocks with particular points on
the dials. It is just the same in the case of space-measurements by
means of measuring-rods, as a little consideration will show.

The following statements hold generally: Every physical descrip-
tion resolves itself into a number of statements, each of which refers
to the space-time coincidence of two events A and B. In terms of
Gaussian co-ordinates, every such statement is expressed by the agree-
ment of their four co-ordinates Thus in reality, the
description of the time-space continuum by means of Gauss co-
ordinates completely replaces the description with the aid of a body
of reference, without suffering from the defects of the latter mode of
description; it is not tied down to the Euclidean character of the con-
tinuum which has to be represented.

x1, x2, x3, x4.



203

A STUBBORNLY PERSISTENT ILLUSION

T W E N T Y - E I G H T

EXACT FORMULATION

OF THE GENERAL PRINCIPLE

OF RELATIVITY
We are now in a position to replace the provisional formulation of the
general principle of relativity given in Section 18 by an exact formu-
lation. The form there used, “All bodies of reference K, etc., are
equivalent for the description of natural phenomena (formulation of
the general laws of nature), whatever may be their state of motion,”
cannot be maintained, because the use of rigid reference-bodies, in the
sense of the method followed in the special theory of relativity, is in
general not possible in space-time description. The Gauss co-ordinate
system has to take the place of the body of reference. The following
statement corresponds to the fundamental idea of the general princi-
ple of relativity: “All Gaussian co-ordinate systems are essentially equiva-
lent for the formulation of the general laws of nature.”

We can state this general principle of relativity in still another
form, which renders it yet more clearly intelligible than it is when in
the form of the natural extension of the special principle of relativity.
According to the special theory of relativity, the equations which
express the general laws of nature pass over into equations of the same
form when, by making use of the Lorentz transformation, we replace
the space-time variables x, y, z, t, of a (Galileian) reference-body K by
the space-time variables of a new reference-body 
According to the general theory of relativity, on the other hand, by
application of arbitrary substitutions of the Gauss variables 
the equations must pass over into equations of the same form; for
every transformation (not only the Lorentz transformation) corre-
sponds to the transition of one Gauss co-ordinate system into another.

If we desire to adhere to our “old-time” three-dimensional view of
things, then we can characterise the development which is being

x1, x2, x3, x4,

K ¿.x¿, y¿, z¿, t¿,

K ¿,
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undergone by the fundamental idea of the general theory of relativity
as follows: The special theory of relativity has reference to Galileian
domains, i.e. to those in which no gravitational field exists. In this
connection a Galileian reference-body serves as body of reference, i.e.
a rigid body the state of motion of which is so chosen that the
Galileian law of the uniform rectilinear motion of “isolated” material
points holds relatively to it.

Certain considerations suggest that we should refer the same
Galileian domains to non-Galileian reference-bodies also. A gravita-
tional field of a special kind is then present with respect to these bodies
(cf. Sections 20 and 23).

In gravitational fields there are no such things as rigid bodies with
Euclidean properties; thus the fictitious rigid body of reference is of
no avail in the general theory of relativity. The motion of clocks is
also influenced by gravitational fields, and in such a way that a phys-
ical definition of time which is made directly with the aid of clocks
has by no means the same degree of plausibility as in the special the-
ory of relativity.

For this reason non-rigid reference-bodies are used, which are as
a whole not only moving in any way whatsoever, but which also suf-
fer alterations in form ad lib. during their motion. Clocks, for which
the law of motion is of any kind, however irregular, serve for the def-
inition of time. We have to imagine each of these clocks fixed at a
point on the non-rigid reference-body. These clocks satisfy only the
one condition, that the “readings” which are observed simultaneously
on adjacent clocks (in space) differ from each other by an indefinitely
small amount. This non-rigid reference-body, which might appropri-
ately be termed a “reference-mollusc,” is in the main equivalent to a
Gaussian four-dimensional co-ordinate system chosen arbitrarily. That
which gives the “mollusc” a certain comprehensibility as compared
with the Gauss co-ordinate system is the (really unjustified) formal
retention of the separate existence of the space co-ordinates as opposed
to the time co-ordinate. Every point on the mollusc is treated as a
space-point, and every material point which is at rest relatively to it
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as at rest, so long as the mollusc is considered as reference-body. The
general principle of relativity requires that all these molluscs can be
used as reference-bodies with equal right and equal success in the for-
mulation of the general laws of nature; the laws themselves must be
quite independent of the choice of mollusc.

The great power possessed by the general principle of relativity lies
in the comprehensive limitation which is imposed on the laws of
nature in consequence of what we have seen above.
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T W E N T Y - N I N E

THE SOLUTION OF THE

PROBLEM OF GRAVITATION ON

THE BASIS OF THE GENERAL

PRINCIPLE OF RELATIVITY
If the reader has followed all our previous considerations, he will have
no further difficulty in understanding the methods leading to the solu-
tion of the problem of gravitation.

We start off from a consideration of a Galileian domain, i.e. a
domain in which there is no gravitational field relative to the Galileian
reference-body K. The behaviour of measuring-rods and clocks with
reference to K is known from the special theory of relativity, likewise
the behaviour of “isolated” material points; the latter move uniformly
and in straight lines.

Now let us refer this domain to a random Gauss co-ordinate sys-
tem or to a “mollusc” as reference-body Then with respect to 
there is a gravitational field G (of a particular kind). We learn the
behaviour of measuring-rods and clocks and also of freely-moving
material points with reference to simply by mathematical trans-
formation. We interpret this behaviour as the behaviour of measuring-
rods, clocks and material points under the influence of the gravitational
field G. Hereupon we introduce a hypothesis: that the influence of the
gravitational field on measuring-rods, clocks and freely-moving mate-
rial points continues to take place according to the same laws, even in
the case where the prevailing gravitational field is not derivable from
the Galileian special case, simply by means of a transformation of co-
ordinates.

The next step is to investigate the space-time behaviour of the grav-
itational field G, which was derived from the Galileian special case sim-
ply by transformation of the co-ordinates. This behaviour is formulated

K ¿

K ¿K ¿.
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in a law, which is always valid, no matter how the reference-body
(mollusc) used in the description may be chosen.

This law is not yet the general law of the gravitational field, since
the gravitational field under consideration is of a special kind. In order
to find out the general law-of-field of gravitation we still require to
obtain a generalisation of the law as found above. This can be obtained
without caprice, however, by taking into consideration the following
demands:

(a) The required generalisation must likewise satisfy the general
postulate of relativity.

(b) If there is any matter in the domain under consideration, only
its inertial mass, and thus according to Section 15 only its energy is
of importance for its effect in exciting a field.

(c) Gravitational field and matter together must satisfy the law of
the conservation of energy (and of impulse).

Finally, the general principle of relativity permits us to determine
the influence of the gravitational field on the course of all those
processes which take place according to known laws when a gravita-
tional field is absent, i.e. which have already been fitted into the frame
of the special theory of relativity. In this connection we proceed in
principle according to the method which has already been explained
for measuring-rods, clocks and freely-moving material points.

The theory of gravitation derived in this way from the general pos-
tulate of relativity excels not only in its beauty; nor in removing the
defect attaching to classical mechanics which was brought to light in
Section 21; nor in interpreting the empirical law of the equality of
inertial and gravitational mass; but it has also already explained a result
of observation in astronomy, against which classical mechanics is
powerless.

If we confine the application of the theory to the case where the
gravitational fields can be regarded as being weak, and in which all
masses move with respect to the co-ordinate system with velocities
which are small compared with the velocity of light, we then obtain
as a first approximation the Newtonian theory. Thus the latter theory
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is obtained here without any particular assumption, whereas Newton
had to introduce the hypothesis that the force of attraction between
mutually attracting material points is inversely proportional to the
square of the distance between them. If we increase the accuracy of
the calculation, deviations from the theory of Newton make their
appearance, practically all of which must nevertheless escape the test
of observation owing to their smallness.

We must draw attention here to one of these deviations. Accord-
ing to Newton’s theory, a planet moves round the sun in an ellipse,
which would permanently maintain its position with respect to the
fixed stars, if we could disregard the motion of the fixed stars them-
selves and the action of the other planets under consideration. Thus,
if we correct the observed motion of the planets for these two influ-
ences, and if Newton’s theory be strictly correct, we ought to obtain
for the orbit of the planet an ellipse, which is fixed with reference to
the fixed stars. This deduction, which can be tested with great accu-
racy, has been confirmed for all the planets save one, with the preci-
sion that is capable of being obtained by the delicacy of observation
attainable at the present time. The sole exception is Mercury, the
planet which lies nearest the sun. Since the time of Leverrier, it has
been known that the ellipse corresponding to the orbit of Mercury,
after it has been corrected for the influences mentioned above, is not
stationary with respect to the fixed stars, but that it rotates exceed-
ingly slowly in the plane of the orbit and in the sense of the orbital
motion. The value obtained for this rotary movement of the orbital
ellipse was 43 seconds of arc per century, an amount ensured to be
correct to within a few seconds of arc. This effect can be explained by
means of classical mechanics only on the assumption of hypotheses
which have little probability, and which were devised solely for this
purpose.

On the basis of the general theory of relativity, it is found that the
ellipse of every planet round the sun must necessarily rotate in the
manner indicated above; that for all the planets, with the exception of
Mercury, this rotation is too small to be detected with the delicacy of
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observation possible at the present time; but that in the case of Mer-
cury it must amount to 43 seconds of arc per century, a result which
is strictly in agreement with observation.

Apart from this one, it has hitherto been possible to make only
two deductions from the theory which admit of being tested by obser-
vation, to wit, the curvature of light rays by the gravitational field of
the sun,1 and a displacement of the spectral lines of light reaching us
from large stars, as compared with the corresponding lines for light
produced in an analogous manner terrestrially (i.e. by the same kind
of atom).2 These two deductions from the theory have both been
confirmed.

1First observed by Eddington and others in 1919. (Cf. Appendix 3, pp. 227–228).
2Established by Adams in 1924. (Cf. pp. 229–231).       
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PART III: CONSIDERATIONS
ON THE UNIVERSE AS 

A WHOLE

T H I R T Y

COSMOLOGICAL DIFFICULTIES

OF NEWTON’S THEORY
Apart from the difficulty discussed in Section 21, there is a second
fundamental difficulty attending classical celestial mechanics, which,
to the best of my knowledge, was first discussed in detail by the
astronomer Seeliger. If we ponder over the questions as to how the
universe, considered as a whole, is to be regarded, the first answer that
suggests itself to us is surely this: As regards space (and time) the uni-
verse is infinite. There are stars everywhere, so that the density of mat-
ter, although very variable in detail, is nevertheless on the average
everywhere the same. In other words: However far we might travel
through space, we should find everywhere an attenuated swarm of
fixed stars of approximately the same kind and density.

This view is not in harmony with the theory of Newton. The lat-
tre theory rather requires that the universe should have a kind of cen-
tre in which the density of the stars is a maximum, and that as we
proceed outwards from this centre the group-density of the stars
should diminish, until finally, at great distances, it is succeeded by an
infinite region of emptiness. The stellar universe ought to be a finite
island in the infinite ocean of space.1

1Proof—According to the theory of Newton, the number of  “lines of force” which come from infinity and terminate in a mass m is pro-
portional to the mass m. If, on the average, the mass density is constant throughout the universe, then a sphere of volume V will enclose
the average mass Thus the number of lines of force passing through the surface F of the sphere into its interior is proportional to 

For unit area of the surface of the sphere the number of lines of force which enters the sphere is thus proportional to or to R. Hence

the intensity of the field at the surface would ultimately become infinite with increasing radius R of the sphere, which is impossible.

p0p0 
V

F

p0V.p0V.
p0



211

A STUBBORNLY PERSISTENT ILLUSION

This conception is in itself not very satisfactory. It is still less sat-
isfactory because it leads to the result that the light emitted by the
stars and also individual stars of the stellar system are perpetually pass-
ing out into infinite space, never to return, and without ever again
coming into interaction with other objects of nature. Such a finite
material universe would be destined to become gradually but system-
atically impoverished.

In order to escape this dilemma, Seeliger suggested a modification
of Newton’s law, in which he assumes that for great distances the force
of attraction between two masses diminishes more rapidly than would
result from the inverse square law. In this way it is possible for the
mean density of matter to be constant everywhere, even to infinity,
without infinitely large gravitational fields being produced. We thus
free ourselves from the distasteful conception that the material uni-
verse ought to possess something of the nature of a centre. Of course
we purchase our emancipation from the fundamental difficulties men-
tioned, at the cost of a modification and complication of Newton’s
law which has neither empirical nor theoretical foundation. We can
imagine innumerable laws which would serve the same purpose, with-
out our being able to state a reason why one of them is to be preferred
to the others; for any one of these laws would be founded just as lit-
tle on more general theoretical principles as is the law of Newton.
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T H I R T Y - O N E

THE POSSIBILITY OF A “FINITE”
AND YET “UNBOUNDED”

UNIVERSE
But speculations on the structure of the universe also move in quite
another direction. The development of non-Euclidean geometry led to
the recognition of the fact, that we can cast doubt on the infiniteness
of our space without coming into conflict with the laws of thought or
with experience (Riemann, Helmholtz). These questions have already
been treated in detail and with unsurpassable lucidity by Helmholtz
and Poincaré, whereas I can only touch on them briefly here.

In the first place, we imagine an existence in two-dimensional
space. Flat beings with flat implements, and in particular flat rigid
measuring-rods, are free to move in a plane. For them nothing exists
outside of this plane: that which they observe to happen to themselves
and to their flat “things” is the all-inclusive reality of their plane. In
particular, the constructions of plane Euclidean geometry can be car-
ried out by means of the rods, e.g. the lattice construction, considered
in Section 24. In contrast to ours, the universe of these beings is two-
dimensional; but, like ours, it extends to infinity. In their universe
there is room for an infinite number of identical squares made up of
rods, i.e. its volume (surface) is infinite. If these beings say their uni-
verse is “plane,” there is sense in the statement, because they mean
that they can perform the constructions of plane Euclidean geometry
with their rods. In this connection the individual rods always repre-
sent the same distance, independently of their position.

Let us consider now a second two-dimensional existence, but this
time on a spherical surface instead of on a plane. The flat beings with
their measuring-rods and other objects fit exactly on this surface and
they are unable to leave it. Their whole universe of observation extends
exclusively over the surface of the sphere. Are these beings able to regard



213

A STUBBORNLY PERSISTENT ILLUSION

the geometry of their universe as being plane geometry and their rods
withal as the realisation of “distance”? They cannot do this. For if they
attempt to realize a straight line, they will obtain a curve, which we
“three-dimensional beings” designate as a great circle, i.e. a self-
contained line of definite finite length, which can be measured up by
means of a measuring-rod. Similarly, this universe has a finite area that
can be compared with the area of a square constructed with rods. The
great charm resulting from this consideration lies in the recognition of
the fact that the universe of these beings is finite and yet has no limits.

But the spherical-surface beings do not need to go on a world-
tour in order to perceive that they are not living in a Euclidean uni-
verse. They can convince themselves of this on every part of their
“world,” provided they do not use too small a piece of it. Starting
from a point, they draw “straight lines” (arcs of circles as judged in
three-dimensional space) of equal length in all directions. They will
call the line joining the free ends of these lines a “circle.” For a plane
surface, the ratio of the circumference of a circle to its diameter, both
lengths being measured with the same rod, is, according to Euclidean
geometry of the plane, equal to a constant value which is inde-
pendent of the diameter of the circle. On their spherical surface our
flat beings would find for this ratio the value

i.e. a smaller value than the difference being the more consider-
able, the greater is the radius of the circle in comparison with the
radius R of the “world-sphere.” By means of this relation the spheri-
cal beings can determine the radius of their universe (“world”), even
when only a relatively small part of their world-sphere is available for
their measurements. But if this part is very small indeed, they will no
longer be able to demonstrate that they are on a spherical “world” and
not on a Euclidean plane, for a small part of a spherical surface dif-
fers only slightly from a piece of a plane of the same size.

p,

p �

sin a
r
R
b

a
v
R
b

,

p,



214

REL ATIVIT Y–THE SPECIAL AND GENERAL THEORY

Thus if the spherical-surface beings are living on a planet of which
the solar system occupies only a negligibly small part of the spherical
universe, they have no means of determining whether they are living
in a finite or in an infinite universe, because the “piece of universe”
to which they have access is in both cases practically plane, or Euclid-
ean. It follows directly from this discussion, that for our sphere-beings
the circumference of a circle first increases with the radius until the
“circumference of the universe” is reached, and that it thenceforward
gradually decreases to zero for still further increasing values of the radius.
During this process the area of the circle continues to increase more and
more, until finally it becomes equal to the total area of the whole
“world-sphere.”

Perhaps the reader will wonder why we have placed our “beings”
on a sphere rather than on another closed surface. But this choice has
its justification in the fact that, of all closed surfaces, the sphere is
unique in possessing the property that all points on it are equivalent.
I admit that the ratio of the circumference c of circle to its radius r
depends on r, but for a given value of r it is the same for all points
of the “world-sphere”; in other words, the “world-sphere” is a “surface
of constant curvature.”

To this two-dimensional sphere-universe there is a three-dimensional
analogy, namely, the three-dimensional spherical space which was dis-
covered by Riemann. Its points are likewise all equivalent. It possesses
a finite volume, which is determined by its “radius” Is it pos-
sible to imagine a spherical space? To imagine a space means nothing
else than that we imagine an epitome of our “space” experience, i.e.
of experience that we can have in the movement of “rigid” bodies. In
this sense we can imagine a spherical space.

Suppose we draw lines or stretch strings in all directions from a
point, and mark off from each of these the distance 	 with a measuring-
rod. All the free end-points of these lengths lie on a spherical surface.
We can specially measure up the area (F ) of this surface by means of
a square made up of measuring-rods. If the universe is Euclidean, then

if it is spherical, then F is always less than With4pg2.F � 4pg2;

12p2R 3 2.
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increasing values of F increases from zero up to a maximum value
which is determined by the “world-radius,” but for still further increas-
ing values of the area gradually diminishes to zero. At first, the
straight lines which radiate from the starting point diverge farther and
farther from one another, but later they approach each other, and
finally they run together again at a “counter-point” to the starting
point. Under such conditions they have traversed the whole spherical
space. It is easily seen that the three-dimensional spherical space is
quite analogous to the two-dimensional spherical surface. It is finite
(i.e. of finite volume), and has no bounds.

It may be mentioned that there is yet another kind of curved
space: “elliptical space.” It can be regarded as a curved space in which
the two “counter-points” are identical (indistinguishable from each
other). An elliptical universe can thus be considered to some extent as
a curved universe possessing central symmetry.

It follows from what has been said, that closed spaces without lim-
its are conceivable. From amongst these, the spherical space (and the
elliptical) excels in its simplicity, since all points on it are equivalent.
As a result of this discussion, a most interesting question arises for
astronomers and physicists, and that is whether the universe in which
we live is infinite, or whether it is finite in the manner of the spher-
ical universe. Our experience is far from being sufficient to enable us
to answer this question. But the general theory of relativity permits of
our answering it with a moderate degree of certainty, and in this con-
nection the difficulty mentioned in Section 30 finds its solution.

g,

g,
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T H I R T Y - T W O

THE STRUCTURE OF SPACE

ACCORDING TO THE GENERAL

THEORY OF RELATIVITY
According to the general theory of relativity, the geometrical proper-
ties of space are not independent, but they are determined by matter.
Thus we can draw conclusions about the geometrical structure of the
universe only if we base our considerations on the state of the matter
as being something that is known. We know from experience that, for
a suitably chosen co-ordinate system, the velocities of the stars are
small as compared with the velocity of transmission of light. We can
thus as a rough approximation arrive at a conclusion as to the nature
of the universe as a whole, if we treat the matter as being at rest.

We already know from our previous discussion that the behav-
iour of measuring-rods and clocks is influenced by gravitational fields,
i.e. by the distribution of matter. This in itself is sufficient to exclude
the possibility of the exact validity of Euclidean geometry in our uni-
verse. But it is conceivable that our universe differs only slightly from
a Euclidean one, and this notion seems all the more probable, since
calculations show that the metrics of surrounding space is influenced
only to an exceedingly small extend by masses even of the magnitude
of our sun. We might imagine that, as regards geometry, our universe
behaves analogously to a surface which is irregularly curved in its
individual parts, but which nowhere departs appreciably from a plane:
Something like the rippled surface of a lake. Such a universe might
fittingly be called a quasi-Euclidean universe. As regards its space it
would be infinite. But calculation shows that in a quasi-Euclidean
universe the average density of matter would necessarily be nil. Thus
such a universe could not be inhabited by matter everywhere; it
would present to us that unsatisfactory picture which we portrayed
in Section 30.
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If we are to have in the universe an average density of matter
which differs from zero, however small may be that difference, then
the universe cannot be quasi-Euclidean. On the contrary, the results
of calculation indicate that if matter be distributed uniformly, the uni-
verse would necessarily be spherical (or elliptical). Since in reality the
detailed distribution of matter is not uniform, the real universe will
deviate in individual parts from the spherical, i.e. the universe will be
quasi-spherical. But it will be necessarily finite. In fact, the theory sup-
plies us with a simple connection1 between the space-expanse of the
universe and the average density of matter in it.

1For the “radius” R of the universe we obtain the equation

The use of the C.G.S. system is in this equation gives is the average density of the matter and x is a constant connected

with the Newtonian constant of gravitational.

2

k
� 108.1037; r

R 2 �
2

kr
.
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A P P E N D I X O N E

SIMPLE DERIVATION OF THE

LORENTZ TRANSFORMATION
[SUPPLEMENTARY TO SECTION 11]

For the relative orientation of the co-ordinate systems indicated in
Fig. 2, the x-axes of both systems permanently coincide. In the pres-
ent case we can divide the problem into parts by considering first
only events which are localised on the x-axis. Any such event is rep-
resented with respect to the co-ordinate system K by the abscissa x
and the time t, and with respect to the system by the abscissa

and the time We require to find and when x and t are
given.

A light-signal, which is proceeding along the positive axis of x, is
transmitted according to the equation

or

. . . . (1).

Since the same light-signal has to be transmitted relative to with
the velocity c, the propagation relative to the system will be rep-
resented by the analogous formula

. . . . (2).

Those space-time points (events) which satisfy (1) must also satisfy (2).
Obviously this will be the case when the relation

. . . (3),

is fulfilled in general, where indicates a constant; for, according 
to (3), the disappearance of involves the disappearance of

If we apply quite similar considerations to light rays which
are being transmitted along the negative x-axis, we obtain the
condition

. . . . (4).1x¿ � ct¿ 2 � m1x � ct2

1x¿ � ct¿ 2.
1x � ct2
l

1x¿ � ct¿ 2 � l1x � ct2

x¿ � ct¿ � 0

K ¿
K ¿

x � ct � 0

x � ct

t¿x¿t¿.x¿
K ¿
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By adding (or subtracting) equations (3) and (4), and introducing
for convenience the constants a and b in place of the constants and

where

and

we obtain the equations

. . . . . (5).

We should thus have the solution of our problem, if the constants
a and b were known. These result from the following discussion.

For the origin of we have permanently and hence
according to the first of the equations (5)

If we call v the velocity with which the origin of is moving
relative to K, we then have

. . . . . (6).

The same value v can be obtained from equations (5), if we calcu-
late the velocity of another point of relative to K, or the velocity
(directed towards the negative x-axis) of a point of K with respect to 
In short, we can designate v as the relative velocity of the two systems.

Furthermore, the principle of relativity teaches us that, as judged
from K, the length of a unit measuring-rod which is at rest with ref-
erence to must be exactly the same as the length, as judged from

of a unit measuring-rod which is at rest relative to K. In order to
see how the points of the -axis appear as viewed from K, we only
require to take a “snapshot” of from K; this means that we have
to insert a particular value of t (time of K ), e.g. For this value
of t we then obtain from the first of the equations (5)

x¿ � ax.

t � 0.
K ¿

x¿
K ¿,

K ¿

K ¿.
K ¿

v �
bc
a

K ¿

x �
bc
a t.

x¿ � 0,K ¿

x¿ � ax � bct
ct¿� act � bx

f

b �
l � m

2
,

a �
l � m

2

m,
l,
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Two points of the -axis which are separated by the distance
when measured in the system are thus separated in our

instantaneous photograph by the distance

. . . . . (7).

But if the snapshot be taken from and if we eliminate
t from the equations (5), taking into account the expression (6), we
obtain

From this we conclude that two points of the x-axis separated by
the distance 1 (relative to K ) will be represented on our snapshot by
the distance

. . . . (7a).

But from what has been said, the two snapshots must be identi-
cal; hence in (7) must be equal to in (7a), so that we obtain

. . . . (7b).

The equations (6) and (7b) determine the constants a and b. By
inserting the values of these constants in (5), we obtain the first and
the fourth of the equations given in Section XI.

. . . . (8).

Thus we have obtained the Lorentz transformation for events on
the x-axis. It satisfies the condition

. . . (8a).x¿2 � c2t¿2 � x2 � c2t2

x¿ �
x � vtB1 �

v2

c2

t¿ �

t �
v
c2 x

B1 �
v2

c2

w

a2 �
1

1 �
v 2

c 2

¢x¿¢x

¢x¿ � a a1�
v2

c2b

x¿ � a a1 �
v2

c2b x.

K ¿1t¿ � 02,

¢x �
1
a

K ¿¢x¿ � 1
x¿
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The extension of this result, to include events which take place
outside the x-axis, is obtained by retaining equations (8) and supple-
menting them by the relations

. . . . . (9).

In this way we satisfy the postulate of the constancy of the velocity of
light in vacuo for rays of light of arbitrary directions, both for the sys-
tem K and for the system This may be shown in the following
manner.

We suppose a light-signal sent out from the origin of K at the time
It will be propagated according to the equation

or, if we square this equation, according to the equation
. . . (10).

It is required by the law of propagation of light, in conjunction
with the postulate of relativity, that the transmission of the signal in
question should take place—as judged from —in accordance with
the corresponding formula

or,
. . . (10a).

In order that equation (10a) may be a consequence of equation (10),
we must have

(11).
Since equation (8a) must hold for points on the x-axis, we thus

have It is easily seen that the Lorentz transformation really sat-
isfies equation (11) for for (11) is a consequence of (8a) and
(9), and hence also of (8) and (9). We have thus derived the Lorentz
transformation.

The Lorentz transformation represented by (8) and (9) still
requires to be generalised. Obviously it is immaterial whether the axes
of be chosen so that they are spatially parallel to those of K. It is
also not essential that the velocity of translation of with respect to
K should be in the direction of the x-axis. A simple consideration

K ¿
K ¿

s � 1;
s � 1.

x¿ � y¿2 � z¿2 � c2t¿2 � s1x2 � y2 � z 2 � c2t22

x¿2 � y¿2 � z¿2 � c2t¿2 � 0

r¿ � ct¿,

K ¿

x2 � y2 � z 2 � c 2t 2 � 0

r � 2x 2 � y 2 � z 2 � ct,
t � 0.

K ¿.

y¿ � y
z¿ � z

f
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shows that we are able to construct the Lorentz transformation in this
general sense from two kinds of transformations, viz. from Lorentz trans-
formations in the special sense and from purely spatial transformations,
which corresponds to the replacement of the rectangular co-ordinate
system by a new system with its axes pointing in other directions.

Mathematically, we can characterize the generalized Lorentz trans-
formation thus:

It expresses in terms of linear homogeneous functions
of x, y, z, t, of such a kind that the relation

(11a)
is satisfied identically. That is to say: If we substitute their expressions
in x, y, z, t in place of on the left-hand side, then the left-
hand side of (11a) agrees with the right-hand side.

x¿, y¿, z¿, t¿,

x¿2 � y¿2 � z¿2 � c2t¿2 � x2 � y2 � z2 � c2t2

x¿, y¿, z¿, t¿,
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A P P E N D I X T W O

MINKOWSKI’S
FOUR-DIMENSIONAL SPACE

(“WORLD”)
[SUPPLEMENTARY TO SECTION 17]

We can characterise the Lorentz transformation still more simply if we
introduce the imaginary ct in place of t, as time-variable, If, in
accordance with this, we insert

and similarly for the accented system then the condition which is
identically satisfied by the transformation can be expressed thus:

(12).
That is, by the afore-mentioned choice of “co-ordinates,” (11a) is

transformed into this equation.
We see from (12) that the imaginary time co-ordinate enters into

the condition of transformation in exactly the same way as the space
co-ordinates It is due to this fact that, according to the the-
ory of relativity, the “time” enters into natural laws in the same
form as the space co-ordinates .

A four-dimensional continuum described by the “co-ordinates”
was called “world” by Minkowski, who also termed a

point-event a “world-point.” From a “happening” in three-dimensional
space, physics becomes, as it were, an “existence” in the four-dimensional
“world.”

This four-dimensional “world” bears a close similarity to the three-
dimensional “space” of (Euclidean) analytical geometry. If we introduce
into the latter a new Cartesian co-ordinate system with the1x¿1, x¿2, x¿32

x1, x2, x3, x4,

x1, x2, x3

x4

x1, x2, x3.

x4

x1¿2 � x2¿2 � x3¿2 � x4¿2 � x 2
1 � x 2

2 � x 2
3 � x 2

4

K ¿,
 x4 � 1�1. ct,
 x3 � z
 x2 � y
 x1 � x

1�1.
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same origin, then are linear homogeneous functions of
which identically satisfy the equation

The analogy with (12) is a complete one. We can regard Minkowski’s
“world” in a formal manner as a four-dimensional Euclidean space
(with imaginary time co-ordinate); the Lorentz transformation corre-
sponds to a “rotation” of the co-ordinate system in the four-dimensional
“world.”

x1¿2 � x2¿2 � x3¿2 � x 2
1 � x 2

2 � x 2
3 .

x1, x2, x3,
x¿1, x¿2, x¿3 ,
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A P P E N D I X T H R E E

THE EXPERIMENTAL

CONFIRMATION OF THE

GENERAL THEORY

OF RELATIVITY
From a systematic theoretical point of view, we may imagine the
process of evolution of an empirical science to be a continuous process
of induction. Theories are evolved and are expressed in short compass
as statements of a large number of individual observations in the form
of empirical laws, from which the general laws can be ascertained by
comparison. Regarded in this way, the development of a science bears
some resemblance to the compilation of a classified catalogue. It is, as
it were, a purely empirical enterprise.

But this point of view by no means embraces the whole of the
actual process; for it slurs over the important part played by intuition
and deductive thought in the development of an exact science. As soon
as a science has emerged from its initial stages, theoretical advances
are no longer achieved merely by a process of arrangement. Guided
by empirical data, the investigator rather develops a system of thought
which, in general, is built up logically from a small number of fun-
damental assumptions, the so-called axioms. We call such a system of
thought a theory. The theory finds the justification for its existence in
the fact that it correlates a large number of single observations, and it
is just here that the “truth” of the theory lies.

Corresponding to the same complex of empirical data, there may
be several theories, which differ from one another to a considerable
extent. But as regards the deductions from the theories which are capa-
ble of being tested, the agreement between the theories may be so com-
plete, that it becomes difficult to find any deductions in which the two
theories differ from each other. As an example, a case of general interest
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is available in the province of biology, in the Darwinian theory of the
development of species by selection in the struggle for existence, and
in the theory of development which is based on the hypothesis of the
hereditary transmission of acquired characters.

We have another instance of far-reaching agreement between the
deductions from two theories in Newtonian mechanics on the one
hand, and the general theory of relativity on the other. This agreement
goes so far, that up to the present we have been able to find only a
few deductions from the general theory of relativity which are capa-
ble of investigation, and to which the physics of pre-relativity days
does not also lead, and this despite the profound difference in the fun-
damental assumptions of the two theories. In what follows, we shall
again consider these important deductions, and we shall also discuss
the empirical evidence appertaining to them which has hitherto been
obtained.

(A) MOTION OF THE PERIHELION 
OF MERCURY

According to Newtonian mechanics and Newton’s law of gravitation,
a planet which is revolving round the sun would describe an ellipse
round the latter, or, more correctly, round the common centre of grav-
ity of the sun and the planet. In such a system, the sun, or the com-
mon centre of gravity, lies in one of the foci of the orbital ellipse in
such a manner that, in the course of a planet-year, the distance sun-
planet grows from a minimum to a maximum, and then decreases
again to a minimum. If instead of Newton’s law we insert a some-
what different law of attraction into the calculation, we find that,
according to this new law, the motion would still take place in such
a manner that the distance sun-planet exhibits periodic variations; but
in this case the angle described by the line joining sun and planet dur-
ing such a period (from perihelion—closest proximity to the sun—to
perihelion) would differ from The line of the orbit would not
then be a closed one but in the course of time it would fill up an

360�.
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annular part of the orbital plane, viz. between the circle of least and
the circle of greatest distance of the planet from the sun.

According also to the general theory of relativity, which differs of
course from the theory of Newton, a small variation from the Newton-
Kepler motion of a planet in its orbit should take place, and in such
a way, that the angle described by the radius sun-planet between one
perihelion and the next should exceed that corresponding to one com-
plete revolution by an amount given by

(N.B.—One complete revolution corresponds to the angle 2
 in the
absolute angular measure customary in physics, and the above expression
gives the amount by which the radius sun-planet exceeds this angle dur-
ing the interval between one perihelion and the next.) In this expression
a represents the major semi-axis of the ellipse, e its eccentricity, c the
velocity of light, and T the period of revolution of the planet. Our result
may also be stated as follows: According to the general theory of relativ-
ity, the major axis of the ellipse rotates round the sun in the same sense
as the orbital motion of the planet. Theory requires that this rotation
should amount to 43 seconds of arc per century for the planet Mercury,
but for the other planets of our solar system its magnitude should be so
small that it would necessarily escape detection.1

In point of fact, astronomers have found that the theory of Newton
does not suffice to calculate the observed motion of Mercury with
an exactness corresponding to that of the delicacy of observation
attainable at the present time. After taking account of all the disturb-
ing influences exerted on Mercury by the remaining planets, it was
found (Leverrier—1859—and Newcomb—1895) that an unexplained
perihelial movement of the orbit of Mercury remained over, the
amount of which does not differ sensibly from the above-mentioned

seconds of arc per century. The uncertainty of the empirical
result amounts to a few seconds only.
�43

�
24p3a2

T 2c211 � e22
.

1Especially since the next planet Venus has an orbit that is almost an exact circle, which makes it more difficult to locate the perihe-
lion with precision.      
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(B) DEFLECTION OF LIGHT BY A
GRAVITATIONAL FIELD

In Section 12 it has been already mentioned that according to the gen-
eral theory of relativity, a ray of light will experience a curvature of its
path when passing through a gravitational field, this curvature being
similar to that experienced by the path of a body which is projected
through a gravitational field. As a result of this theory, we should
expect that a ray of light which is passing close to a heavenly body
would be deviated towards the latter. For a ray of light which passes
the sun at a distance of sun-radii from its centre, the angle of deflec-
tion (a) should amount to

It may be added that, according to the theory,
half of this deflection is produced by the New-
tonian field of attraction of the sun, and the
other half by the geometrical modification (“cur-
vature”) of space caused by the sun.

This result admits of an experimental test by
means of the photographic registration of stars
during a total eclipse of the sun. The only reason
why we must wait for a total eclipse is because at
every other time the atmosphere is so strongly
illuminated by the light from the sun that the
stars situated near the sun’s disc are invisible. The predicted effect can
be seen clearly from the accompanying diagram. If the sun (S ) were
not present, a star which is practically infinitely distant would be seen
in the direction as observed from the earth. But as a consequence
of the deflection of light from the star by the sun, the star will be seen
in the direction i.e. at a somewhat greater distance from the cen-
tre of the sun that corresponds to its real position. 

In practice, the question is tested in the following way. The stars
in the neighbourhood of the sun are photographed during a solar

D2,

D1,

a �
1.7 seconds of arc

¢
.

¢

FIG. 5.



229

A STUBBORNLY PERSISTENT ILLUSION

eclipse. In addition, a second photograph of the same stars is taken
when the sun is situated at another position in the sky, i.e. a few
months earlier or later. As compared with the standard photograph,
the positions of the stars on the eclipse-photograph ought to appear
displaced radially outwards (away from the centre of the sun) by an
amount corresponding to the angle a.

We are indebted to the Royal Society and to the Royal Astro-
nomical Society for the investigation of this important deduction.
Undaunted by the war and by difficulties of both a material and a
psychological nature aroused by the war, these societies equipped
two expeditions—to Sobral (Brazil), and to the island of Principe
(West Africa)—and sent several of Britain’s most celebrated astronomers
(Eddington, Cottingham, Crommelin, Davidson), in order to
obtain photographs of the solar eclipse of 29th May, 1919. The
relative discrepancies to be expected between the stellar photo-
graphs obtained during the eclipse and the comparison photo-
graphs amounted to a few hundredths of a millimetre only. Thus
great accuracy was necessary in making the adjustments required
for the taking of the photographs, and in their subsequent meas-
urement.

The results of the measurements confirmed the theory in a thor-
oughly satisfactory manner. The rectangular components of the
observed and of the calculated deviations of the stars (in seconds of
arc) are set forth in the following table of results:

First Co-ordinate. Second Co-ordinate.
Number of the 

Star. Observed. Calculated. Observed. Calculated.
11 . .
5 . .
4 . .
3 . .
6 . .

10 . .
2 . . �0.09�0.27�0.85�0.95

�0.32�0.35�0.09�0.08
�0.40�0.57�0.04�0.10
�0.87�1.00�0.12�0.20
�0.74�0.83�0.10�0.11
�0.43�0.46�0.31�0.29
�0.02�0.16�0.22�0.19
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(C) DISPLACEMENT OF SPECTRAL LINES
TOWARDS THE RED

In Section 23 it has been shown that in a system which is in rota-
tion with regard to a Galileian system K, clocks of identical construc-
tion, and which are considered at rest with respect to the rotating
reference-body, go at rates which are dependent on the positions of
the clocks. We shall now examine this dependence quantitatively. A
clock, which is situated at a distance from the centre of the disc,
has a velocity relative to K which is given by

where represents the angular velocity of rotation of the disc with
respect to K. If represents the number of ticks of the clock per unit
time (“rate” of the clock) relative to K when the clock is at rest, then
the “rate” of the clock ( ) when it is moving relative to K with a veloc-
ity v, but at rest with respect to the disc, will, in accordance with Sec-
tion 12, be given by

or with sufficient accuracy by

This expression may also be stated in the following form:

If we represent the difference of potential of the centrifugal force
between the position of the clock and the centre of the disc by i.e.
the work, considered negatively, which must be performed on the unit
of mass against the centrifugal force in order to transport it from the
position of the clock on the rotating disc to the centre of the disc,
then we have

f � �
�2g2

2
.

f,

n � n0 a1 �
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From this it follows that

In the first place, we see from this expression that two clocks of iden-
tical construction will go at different rates when situated at different
distances from the centre of the disc. This result is also valid from the
standpoint of an observer who is rotating with the disc.

Now, as judged from the disc, the latter is in a gravitational field
of potential hence the result we have obtained will hold quite gen-
erally for gravitational fields. Furthermore, we can regard an atom
which is emitting spectral lines as a clock, so that the following state-
ment will hold:

An atom absorbs or emits light of a frequency which is dependent on
the potential of the gravitational field in which it is situated.

The frequency of an atom situated on the surface of a heavenly
body will be somewhat less than the frequency of an atom of the same
element which is situated in free space (or on the surface of a smaller

celestial body). Now , where K is Newton’s constant of

gravitation, and M is the mass of the heavenly body. Thus a dis-
placement towards the red ought to take place for spectral lines pro-
duced at the surface of stars as compared with the spectral lines of the
same element produced at the surface of the earth, the amount of this
displacement being

For the sun, the displacement towards the red predicted by the-
ory amounts to about two millionths of the wave-length. A trustworthy
calculation is not possible in the case of the stars, because in general
neither the mass M nor the radius are known.

It is an open question whether or not this effect exists, and at the
present time (1920) astronomers are working with great zeal towards
the solution. Owing to the smallness of the effect in the case of the
sun, it is difficult to form an opinion as to its existence. Whereas
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Grebe and Bachem (Bonn), as a result of their own measurements and
those of Evershed and Schwarzschild on the cyanogen bands, have
placed the existence of the effect almost beyond doubt, other investi-
gators, particularly St. John, have been led to the opposite opinion in
consequence of their measurements.

Mean displacements of lines towards the less refrangible end of
the spectrum are certainly revealed by statistical investigations of the
fixed stars; but up to the present the examination of the available data
does not allow of any definite decision being arrived at, as to whether
or not these displacements are to be referred in reality to the effect of
gravitation. The results of observation have been collected together,
and discussed in detail from the standpoint of the question which has
been engaging our attention here, in a paper by E. Freundlich enti-
tled “Zur Prüfung der aligemeinen Relativitäts-Theorie” (Die Natur-
wissenschaften, 1919, No. 35, p. 520: Julius Springer, Berlin).

At all events, a definite decision will be reached during the next
few years. If the displacement of spectral lines towards the red by the
gravitational potential does not exist, then the general theory of rela-
tivity will be untenable. On the other hand, if the cause of the dis-
placement of spectral lines be definitely traced to the gravitational
potential, then the study of this displacement will furnish us with
important information as to the mass of the heavenly bodies.

NOTE.—The displacement of spectral lines towards the red end of the spectrum was def-
initely established by Adams in 1924, by observations on the dense companion of Sirius, for
which the effect is about thirty times greater than for the sun.

R. W. L.
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A P P E N D I X F O U R

THE STRUCTURE OF SPACE

ACCORDING TO THE GENERAL

THEORY OF RELATIVITY
[SUPPLEMENTARY TO SECTION 32]

Since the publication of the first edition of this little book, our knowl-
edge about the structure of space in the large (“cosmo-logical problem”)
has had an important development, which ought to be mentioned even
in a popular presentation of the subject.

My original considerations on the subject were based on two
hypotheses:

1. There exists an average density of matter in the whole of space
which is everywhere the same and different from zero.

2. The magnitude (“radius”) of space is independent of time.
Both these hypotheses proved to be consistent, according to the

general theory of relativity, but only after a hypothetical term was
added to the field equations, a term which was not required by the
theory as such nor did it seem natural from a theoretical point of view
(“cosmological term of the field equations”).

Hypothesis (2) appeared unavoidable to me at the time, since I
thought that one would get into bottomless speculations if one
departed from it.

However, already in the ’twenties, the Russian mathematician
Friedman showed that a different hypothesis was natural from a purely
theoretical point of view. He realized that it was possible to preserve
hypothesis (1) without introducing the less natural cosmological term
into the field equations of gravitation, if one was ready to drop
hypothesis (2). Namely, the original field equations admit a solution
in which the “world-radius” depends on time (expanding space). In
that sense one can say, according to Friedman, that the theory
demands an expansion of space.
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A few years later Hubble showed, by a special investigation of the
extra-galactic nebulae (“milky ways”), that the spectral lines emitted
showed a red shift which increased regularly with the distance of the
nebulae. This can be interpreted in regard to our present knowledge only
in the sense of Doppler’s principle, as an expansive motion of the sys-
tem of stars in the large—as required, according to Friedman, by the
field equations of gravitation. Hubble’s discovery can, therefore, be
considered to some extent as a confirmation of the theory.

There does arise, however, a stranger difficulty. The interpretation
of the galactic line-shift discovered by Hubble as an expansion (which
can hardly be doubted from a theoretical point of view), leads to an
origin of this expansion which lies “only” about years ago, while
physical astronomy makes it appear likely that the development of
individual stars and systems of stars takes considerably longer. It is in
no way known how this incongruity is to be overcome.

I further want to remark that the theory of expanding space,
together with the empirical data of astronomy, permit no decision to
be reached about the finite or infinite character of (three-dimensional)
space, while the original “static” hypothesis of space yielded the clo-
sure (finiteness) of space.

109



Sidelights on
Relativity

W
hat really happens when one billiard ball strikes another?
Prior to the twentieth century, it was understood that the
cue ball and target ball only interacted during the brief

moment when they were in contact with one another, as is dictated
by common sense. This is all well and good for billiard balls, but what
about the forces of gravity and electromagnetism, which appear to act at
a distance? Scientists had hypothesized that those forces must propagate
through some ponderable medium, known as the “luminiferous ether,”
much as a shock wave propagates through the air.

The ether, however, did not stand up to serious scientific scrutiny.
In 1887, Albert Michelson and Edward Morley showed that, whatever
the ether might be, it did not behave like normal matter. For exam-
ple, a water wave traveling along a flowing river will propagate faster
in the direction of the water’s motion than against it. In the case of
light, however, Michelson and Morley showed that the speed of prop-
agation was the same regardless of the relative motion of the observer
and the hypothetical ether.

In “Ether and the Theory of Relativity,” Einstein notes that spe-
cial relativity is predicated on the observational fact that light travels
at a constant speed for all observers, and thus ether, whatever it is,
cannot be like ordinary matter. His theory of general relativity further
complicates this matter by proposing that gravity gives rise to the
structure of space itself. To put this plainly, gravity is defined even in
“empty” space, and thus, there must be something.

That “something” is the ether, or, in modern language, a field.
General relativity and Maxwell’s theory of electromagnetism repre-
sented the first field theories: descriptions of how the world works in
terms of omnipresent fields, rather than tiny particles. In many
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respects, this is one of the most important contributions of relativity
to physics. In the modern view, all forces arise from fields. The bil-
liard balls described above don’t really collide at all, but their electro-
magnetic fields repel each other on very small scales. In quantum field
theory, developed in the mid-twentieth century, about forty years after
the present work, not only do the forces, but the particles themselves
arise from the field. Consider this work, then, as a transitional com-
mentary between Isaac Newton’s classical particle picture and the mod-
ern picture in which the universe is comprised fundamentally of fields.
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ETHER AND THE THEORY

OF RELATIVITY
An Address delivered on May 5th, 1920, in the University of Leyden

How does it come about that alongside of the idea of ponderable
matter, which is derived by abstraction from everyday life, the physi-
cists set the idea of the existence of another kind of matter, the ether?
The explanation is probably to be sought in those phenomena which
have given rise to the theory of action at a distance, and in the prop-
erties of light which have led to the undulatory theory. Let us devote
a little while to the consideration of these two subjects.

Outside of physics we know nothing of action at a distance. When
we try to connect cause and effect in the experiences which natural
objects afford us, it seems at first as if there were no other mutual
actions than those of immediate contact, e.g. the communication of
motion by impact, push and pull, heating or inducing combustion by
means of a flame, etc. It is true that even in everyday experience
weight, which is in a sense action at a distance, plays a very impor-
tant part. But since in daily experience the weight of bodies meets us
as something constant, something not linked to any cause which is
variable in time or place, we do not in everyday life speculate as to
the cause of gravity, and therefore do not become conscious of its char-
acter as action at a distance. It was Newton’s theory of gravitation that
first assigned a cause for gravity by interpreting it as action at a dis-
tance, proceeding from masses. Newton’s theory is probably the greatest
stride ever made in the effort towards the causal nexus of natural
phenomena. And yet this theory evoked a lively sense of discomfort
among Newton’s contemporaries, because it seemed to be in conflict
with the principle springing from the rest of experience, that there can
be reciprocal action only through contact, and not through immedi-
ate action at a distance. It is only with reluctance that man’s desire for
knowledge endures a dualism of this kind. How was unity to be pre-
served in his comprehension of the forces of nature? Either by trying

237

A STUBBORNLY PERSISTENT ILLUSION



238

SIDELIGHTS ON REL ATIVIT Y

to look upon contact forces as being themselves distant forces which
admittedly are observable only at a very small distance—and this was
the road which Newton’s followers, who were entirely under the spell
of his doctrine, mostly preferred to take; or by assuming that the New-
tonian action at a distance is only apparently immediate action at a
distance, but in truth is conveyed by a medium permeating space,
whether by movements or by elastic deformation of this medium.
Thus the endeavour toward a unified view of the nature of forces leads
to the hypothesis of an ether. This hypothesis, to be sure, did not at
first bring with it any advance in the theory of gravitation or in physics
generally, so that it became customary to treat Newton’s law of force
as an axiom not further reducible. But the ether hypothesis was bound
always to play some part in physical science, even if at first only a
latent part.

When in the first half of the nineteenth century the far-reaching
similarity was revealed which subsists between the properties of light
and those of elastic waves in ponderable bodies, the ether hypothesis
found fresh support. It appeared beyond question that light must be
interpreted as a vibratory process in an elastic, inert medium filling
up universal space. It also seemed to be a necessary consequence of
the fact that light is capable of polarisation that this medium, the
ether, must be of the nature of a solid body, because transverse waves
are not possible in a fluid, but only in a solid. Thus the physicists were
bound to arrive at the theory of the “quasi-rigid” luminiferous ether,
the parts of which can carry out no movements relatively to one
another except the small movements of deformation which correspond
to light-waves.

This theory—also called the theory of the stationary luminiferous
ether—moreover found a strong support in an experiment which is
also of fundamental importance in the special theory of relativity, the
experiment of Fizeau, from which one was obliged to infer that the
luminiferous ether does not take part in the movements of bodies.
The phenomenon of aberration also favoured the theory of the quasi-
rigid ether.



The development of the theory of electricity along the path
opened up by Maxwell and Lorentz gave the development of our ideas
concerning the ether quite a peculiar and unexpected turn. For
Maxwell himself the ether indeed still had properties which were
purely mechanical, although of a much more complicated kind than
the mechanical properties of tangible solid bodies. But neither
Maxwell nor his followers succeeded in elaborating a mechanical
model for the ether which might furnish a satisfactory mechanical
interpretation of Maxwell’s laws of the electro-magnetic field. The laws
were clear and simple, the mechanical interpretations clumsy and con-
tradictory. Almost imperceptibly the theoretical physicists adapted
themselves to a situation which, from the standpoint of their mechan-
ical programme, was very depressing. They were particularly influ-
enced by the electro-dynamical investigations of Heinrich Hertz. For
whereas they previously had required of a conclusive theory that it
should content itself with the fundamental concepts which belong
exclusively to mechanics (e.g. densities, velocities, deformations,
stresses) they gradually accustomed themselves to admitting electric
and magnetic force as fundamental concepts side by side with those
of mechanics, without requiring a mechanical interpretation for them.
Thus the purely mechanical view of nature was gradually abandoned.
But this change led to a fundamental dualism which in the long-run
was insupportable. A way of escape was now sought in the reverse
direction, by reducing the principles of mechanics to those of elec-
tricity, and this especially as confidence in the strict validity of the
equations of Newton’s mechanics was shaken by the experiments with
beta-rays and rapid kathode rays.

This dualism still confronts us in unextenuated form in the the-
ory of Hertz, where matter appears not only as the bearer of veloci-
ties, kinetic energy, and mechanical pressures, but also as the bearer
of electromagnetic fields. Since such fields also occur in vacuo—i.e. in
free ether—the ether also appears as bearer of electromagnetic fields.
The ether appears indistinguishable in its functions from ordinary
matter. Within matter it takes part in the motion of matter and in
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empty space it has everywhere a velocity; so that the ether has a def-
initely assigned velocity throughout the whole of space. There is no
fundamental difference between Hertz’s ether and ponderable matter
(which in part subsists in the ether).

The Hertz theory suffered not only from the defect of ascribing
to matter and ether, on the one hand mechanical states, and on the
other hand electrical states, which do not stand in any conceivable
relation to each other; it was also at variance with the result of Fizeau’s
important experiment on the velocity of the propagation of light in
moving fluids, and with other established experimental results.

Such was the state of things when H. A. Lorentz entered upon
the scene. He brought theory into harmony with experience by means
of a wonderful simplification of theoretical principles. He achieved
this, the most important advance in the theory of electricity since
Maxwell, by taking from ether its mechanical, and from matter its
electromagnetic qualities. As in empty space, so too in the interior of
material bodies, the ether, and not matter viewed atomistically, was
exclusively the seat of electromagnetic fields. According to Lorentz the
elementary particles of matter alone are capable of carrying out move-
ments; their electromagnetic activity is entirely confined to the carry-
ing of electric charges. Thus Lorentz succeeded in reducing all
electromagnetic happenings to Maxwell’s equations for free space.

As to the mechanical nature of the Lorentzian ether, it may be
said of it, in a somewhat playful spirit, that immobility is the only
mechanical property of which it has not been deprived by H. A.
Lorentz. It may be added that the whole change in the conception of
the ether which the special theory of relativity brought about, con-
sisted in taking away from the ether its last mechanical quality, namely,
its immobility. How this is to be understood will forthwith be
expounded.

The space-time theory and the kinematics of the special theory of
relativity were modelled on the Maxwell-Lorentz theory of the elec-
tromagnetic field. This theory therefore satisfies the conditions of the
special theory of relativity, but when viewed from the latter it acquires
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a novel aspect. For if K be a system of co-ordinates relatively to which
the Lorentzian ether is at rest, the Maxwell-Lorentz equations are valid
primarily with reference to K. But by the special theory of relativity
the same equations without any change of meaning also hold in rela-
tion to any new system of co-ordinates which is moving in uni-
form translation relatively to K. Now comes the anxious question:—
Why must I in the theory distinguish the K system above all 
systems, which are physically equivalent to it in all respects, by assum-
ing that the ether is at rest relatively to the K system? For the theo-
retician such an asymmetry in the theoretical structure, with no
corresponding asymmetry in the system of experience, is intolerable.
If we assume the ether to be at rest relatively to K, but in motion rel-
atively to the physical equivalence of K and seems to me from
the logical standpoint, not indeed downright incorrect, but neverthe-
less inacceptable.

The next position which it was possible to take up in face of this
state of things appeared to be the following. The ether does not exist
at all. The electromagnetic fields are not states of a medium, and are
not bound down to any bearer, but they are independent realities
which are not reducible to anything else, exactly like the atoms of pon-
derable matter. This conception suggests itself the more readily as,
according to Lorentz’s theory, electromagnetic radiation, like ponder-
able matter, brings impulse and energy with it, and as, according to
the special theory of relativity, both matter and radiation are but spe-
cial forms of distributed energy, ponderable mass losing its isolation
and appearing as a special form of energy.

More careful reflection teaches us, however, that the special the-
ory of relativity does not compel us to deny ether. We may assume
the existence of an ether; only we must give up ascribing a definite
state of motion to it, i.e. we must by abstraction take from it the last
mechanical characteristic which Lorentz had still left it. We shall see
later that this point of view, the conceivability of which I shall at once
endeavour to make more intelligible by a somewhat halting compari-
son, is justified by the results of the general theory of relativity.

K¿K¿,

K¿

K¿
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Think of waves on the surface of water. Here we can describe two
entirely different things. Either we may observe how the undulatory
surface forming the boundary between water and air alters in the
course of time; or else—with the help of small floats, for instance—
we can observe how the position of the separate particles of water
alters in the course of time. If the existence of such floats for track-
ing the motion of the particles of a fluid were a fundamental impos-
sibility in physics—if, in fact, nothing else whatever were observable
than the shape of the space occupied by the water as it varies in time,
we should have no ground for the assumption that water consists of
movable particles. But all the same we could characterise it as a
medium.

We have something like this in the electromagnetic field. For we
may picture the field to ourselves as consisting of lines of force. If we
wish to interpret these lines of force to ourselves as something mate-
rial in the ordinary sense, we are tempted to interpret the dynamic
processes as motions of these lines of force, such that each separate
line of force is tracked through the course of time. It is well known,
however, that this way of regarding the electromagnetic field leads to
contradictions.

Generalising we must say this:—There may be supposed to be
extended physical objects to which the idea of motion cannot be
applied. They may not be thought of as consisting of particles which
allow themselves to be separately tracked through time. In Minkowski’s
idiom this is expressed as follows:—Not every extended conformation
in the four-dimensional world can be regarded as composed of world-
threads. The special theory of relativity forbids us to assume the ether
to consist of particles observable through time, but the hypothesis of
ether in itself is not in conflict with the special theory of relativity.
Only we must be on our guard against ascribing a state of motion to
the ether.

Certainly, from the standpoint of the special theory of relativity,
the ether hypothesis appears at first to be an empty hypothesis. In the
equations of the electromagnetic field there occur, in addition to the
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densities of the electric charge, only the intensities of the field. The
career of electromagnetic processes in vacuo appears to be completely
determined by these equations, uninfluenced by other physical quan-
tities. The electromagnetic fields appear as ultimate, irreducible reali-
ties, and at first it seems superfluous to postulate a homogeneous,
isotropic ether-medium, and to envisage electromagnetic fields as states
of this medium.

But on the other hand there is a weighty argument to be adduced
in favour of the ether hypothesis. To deny the ether is ultimately to
assume that empty space has no physical qualities whatever. The fun-
damental facts of mechanics do not harmonize with this view. For the
mechanical behaviour of a corporeal system hovering freely in empty
space depends not only on relative positions (distances) and relative
velocities, but also on its state of rotation, which physically may be
taken as a characteristic not appertaining to the system in itself. In
order to be able to look upon the rotation of the system, at least for-
mally, as something real, Newton objectivises space.

Since he classes his absolute space together with real things, for
him rotation relative to an absolute space is also something real.
Newton might no less well have called his absolute space “Ether”; what
is essential is merely that besides observable objects, another thing,
which is not perceptible, must be looked upon as real, to enable accel-
eration or rotation to be looked upon as something real.

It is true that Mach tried to avoid having to accept as real some-
thing which is not observable by endeavouring to substitute in
mechanics a mean acceleration with reference to the totality of the
masses in the universe in place of an acceleration with reference to
absolute space. But inertial resistance opposed to relative acceleration
of distant masses presupposes action at a distance; and as the modern
physicist does not believe that he may accept this action at a distance,
he comes back once more, if he follows Mach, to the ether, which has
to serve as medium for the effects of inertia. But this conception of
the ether to which we are led by Mach’s way of thinking differs essen-
tially from the ether as conceived by Newton, by Fresnel, and by
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Lorentz. Mach’s ether not only conditions the behaviour of inert
masses, but is also conditioned in its state by them.

Mach’s idea finds its full development in the ether of the general
theory of relativity. According to this theory the metrical qualities of
the continuum of space-time differ in the environment of different
points of space-time, and are partly conditioned by the matter exist-
ing outside of the territory under consideration. This space-time vari-
ability of the reciprocal relations of the standards of space and time,
or, perhaps, the recognition of the fact that “empty space” in its phys-
ical relation is neither homogeneous nor isotropic, compelling us to
describe its state by ten functions (the gravitation potentials g (mn)),
has, I think, finally disposed of the view that space is physically empty.
But therewith the conception of the ether has again acquired an intel-
ligible content, although this content differs widely from that of the
ether of the mechanical undulatory theory of light. The ether of the
general theory of relativity is a medium which is itself devoid of all
mechanical and kinematical qualities, but helps to determine mechan-
ical (and electromagnetic) events.

What is fundamentally new in the ether of the general theory of
relativity as opposed to the ether of Lorentz consists in this, that the
state of the former is at every place determined by connections with
the matter and the state of the ether in neighbouring places, which
are amenable to law in the form of differential equations; whereas the
state of the Lorentzian ether in the absence of electromagnetic fields
is conditioned by nothing outside itself, and is everywhere the same.
The ether of the general theory of relativity is transmuted conceptu-
ally into the ether of Lorentz if we substitute constants for the func-
tions of space which describe the former, disregarding the causes which
condition its state. Thus we may also say, I think, that the ether of
the general theory of relativity is the outcome of the Lorentzian ether,
through relativation.

As to the part which the new ether is to play in the physics of the
future we are not yet clear. We know that it determines the metrical
relations in the space-time continuum, e.g. the configurative possibilities
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of solid bodies as well as the gravitational fields; but we do not know
whether it has an essential share in the structure of the electrical
elementary particles constituting matter. Nor do we know whether it
is only in the proximity of ponderable masses that its structure differs
essentially from that of the Lorentzian ether; whether the geometry of
spaces of cosmic extent is approximately Euclidean. But we can assert
by reason of the relativistic equations of gravitation that there must
be a departure from Euclidean relations, with spaces of cosmic order
of magnitude, if there exists a positive mean density, no matter how
small, of the matter in the universe. In this case the universe must of
necessity be spatially unbounded and of finite magnitude, its magni-
tude being determined by the value of that mean density.

If we consider the gravitational field and the electromagnetic field
from the stand-point of the ether hypothesis, we find a remarkable
difference between the two. There can be no space nor any part of
space without gravitational potentials; for these confer upon space its
metrical qualities, without which it cannot be imagined at all. The
existence of the gravitational field is inseparably bound up with the
existence of space. On the other hand a part of space may very well
be imagined without an electromagnetic field; thus in contrast with
the gravitational field, the electromagnetic field seems to be only sec-
ondarily linked to the ether, the formal nature of the electromagnetic
field being as yet in no way determined by that of gravitational ether.
From the present state of theory it looks as if the electromagnetic field,
as opposed to the gravitational field, rests upon an entirely new for-
mal motif, as though nature might just as well have endowed the grav-
itational ether with fields of quite another type, for example, with
fields of a scalar potential, instead of fields of the electromagnetic type.

Since according to our present conceptions the elementary particles
of matter are also, in their essence, nothing else than condensations of
the electromagnetic field, our present view of the universe presents two
realities which are completely separated from each other conceptually,
although connected causally, namely, gravitational ether and electro-
magnetic field, or—as they might also be called—space and matter.
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Of course it would be a great advance if we could succeed in com-
prehending the gravitational field and the electromagnetic field
together as one unified conformation. Then for the first time the
epoch of theoretical physics founded by Faraday and Maxwell would
reach a satisfactory conclusion. The contrast between ether and mat-
ter would fade away, and, through the general theory of relativity, the
whole of physics would become a complete system of thought, like
geometry, kinematics, and the theory of gravitation. An exceedingly
ingenious attempt in this direction has been made by the mathemati-
cian H. Weyl; but I do not believe that his theory will hold its ground
in relation to reality. Further, in contemplating the immediate future
of theoretical physics we ought not unconditionally to reject the pos-
sibility that the facts comprised in the quantum theory may set bounds
to the field theory beyond which it cannot pass.

Recapitulating, we may say that according to the general theory
of relativity space is endowed with physical qualities; in this sense,
therefore, there exists an ether. According to the general theory of rel-
ativity space without ether is unthinkable; for in such space there not
only would be no propagation of light, but also no possibility of exis-
tence for standards of space and time (measuring-rods and clocks), nor
therefore any space-time intervals in the physical sense. But this ether
may not be thought of as endowed with the quality characteristic of
ponderable media, as consisting of parts which may be tracked
through time. The idea of motion may not be applied to it.
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INTRODUCTION TO

“GEOMETRY AND EXPERIENCE”
Mathematics and physics are seen as two sides of the same coin. They
are quite different, however. The truth of physics and other natural
sciences can only be established through observation and experiment.
Even then, the best we can hope to say is that a theory hasn’t been
proven wrong, or “falsified” in the terminology of Karl Popper, rather
than being proven correct. Mathematics, on the other hand, could be
developed and established even by someone with no direct experience
of the physical world.

Geometry seems to lie in an intermediate position between the
physical sciences and pure math. In “Geometry and Experience”
(1921), Einstein notes that while propositions may be proven from
stated axioms in geometry, the axioms themselves cannot be. If one is
to study “practical geometry,” the postulates must be based on the
physical properties of the real universe.

Euclid’s Elements, one of Einstein’s first inspirations as a young
thinker, laid down a set of geometric postulates that seem obvious
from every experience; two straight lines, for example, can have at
most one intersection, parallel lines remain parallel, and so on. Euclid-
ean geometry seems to so perfectly describe our world on the human
scale, and is in such accord with our intuition, that Newton’s mechan-
ics seem to flow straight from Euclid’s geometry.

In the mid-nineteenth century, however, a number of thinkers
began exploring non-Euclidean geometry, which starts from very dif-
ferent axioms than Euclid did and describes curved surfaces. Lines
drawn on a sphere, for example, can intersect each other more than
once. Consider that on a globe, lines of longitude meet at both the
North and South poles. One of Einstein’s greatest contributions to
physics was his recognition that non-Euclidean geometry might fun-
damentally be the correct description of the shape of the universe.
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General relativity is thus a way of describing the geometry of the
universe. As John Archibald Wheeler has put it, “Matter tells space-
time how to curve, and space-time tells matter how to move.” What
does the curvature of the universe mean? On a small scale, it describes
the motions of the planets around the sun, and the gravitational pull
between you and the earth.

On larger scales, there may be an overall curvature to the universe
as well. This can be likened to the earth, which has both an overall
sphericity and little bumps and ridges (mountain ranges) as well. The
shape of the universe describes whether it is finite or infinite as well
as what its ultimate fate will be.

The issues which Einstein raises in “Geometry and Experience”
are still with us. Recent measurements from the Wilkinson Microwave
Anistropy Probe and other experiments suggest that on the largest
scales, the universe is flat, while gravitational wave experiments like
the Laser Interferometer Gravitational Wave Observatory (LIGO) and
the Laser Interfoerometer Space Antenna (LISA), scheduled to launch
in 2015, aim to measure the bumps and wiggles in space-time on the
smallest scales. On all scales, though, our intuition is of little use, and
it is only by direct observation that we may make a “practical geo-
metric” measurement of the shape of space-time.
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GEOMETRY AND EXPERIENCE

An expanded form of an Address to the Prussian Academy of Sciences in
Berlin on January 27th, 1921.

One reason why mathematics enjoys special esteem, above all
other sciences, is that its laws are absolutely certain and indisputable,
while those of all other sciences are to some extent debatable and in
constant danger of being overthrown by newly discovered facts. In
spite of this, the investigator in another department of science would
not need to envy the mathematician if the laws of mathematics
referred to objects of our mere imagination, and not to objects of real-
ity. For it cannot occasion surprise that different persons should arrive
at the same logical conclusions when they have already agreed upon
the fundamental laws (axioms), as well as the methods by which other
laws are to be deduced therefrom. But there is another reason for the
high repute of mathematics, in that it is mathematics which affords
the exact natural sciences a certain measure of security, to which with-
out mathematics they could not attain.

At this point an enigma presents itself which in all ages has agi-
tated inquiring minds. How can it be that mathematics, being after
all a product of human thought which is independent of experience,
is so admirably appropriate to the objects of reality? Is human reason,
then, without experience, merely by taking thought, able to fathom
the properties of real things?

In my opinion the answer to this question is, briefly, this:—As far
as the laws of mathematics refer to reality, they are not certain; and as
far as they are certain, they do not refer to reality. It seems to me that
complete clearness as to this state of things first became common prop-
erty through that new departure in mathematics which is known by
the name of mathematical logic or “Axiomatics.” The progress achieved
by axiomatics consists in its having neatly separated the logical-formal
from its objective or intuitive content; according to axiomatics the
logical-formal alone forms the subject-matter of mathematics, which is
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not concerned with the intuitive or other content associated with the
logical-formal.

Let us for a moment consider from this point of view any axiom
of geometry, for instance, the following:—Through two points in space
there always passes one and only one straight line. How is this axiom
to be interpreted in the older sense and in the more modern sense?

The older interpretation:—Every one knows what a straight line
is, and what a point is. Whether this knowledge springs from an abil-
ity of the human mind or from experience, from some collaboration
of the two or from some other source, is not for the mathematician
to decide. He leaves the question to the philosopher. Being based upon
this knowledge, which precedes all mathematics, the axiom stated
above is, like all other axioms, self-evident, that is, it is the expression
of a part of this a priori knowledge.

The more modern interpretation:—Geometry treats of entities
which are denoted by the words straight line, point, etc. These enti-
ties do not take for granted any knowledge or intuition whatever, but
they presuppose only the validity of the axioms, such as the one stated
above, which are to be taken in a purely formal sense, i.e. as void of
all content of intuition or experience. These axioms are free creations
of the human mind. All other propositions of geometry are logical
inferences from the axioms (which are to be taken in the nominalis-
tic sense only). The matter of which geometry treats is first defined
by the axioms. Schlick in his book on epistemology has therefore char-
acterised axioms very aptly as “implicit definitions.”

This view of axioms, advocated by modern axiomatics, purges
mathematics of all extraneous elements, and thus dispels the mystic
obscurity which formerly surrounded the principles of mathematics.

But a presentation of its principles thus clarified makes it also evi-
dent that mathematics as such cannot predicate anything about
perceptual objects or real objects. In axiomatic geometry the words
“point,” “straight line,” etc., stand only for empty conceptual
schemata. That which gives them substance is not relevant to mathe-
matics.
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Yet on the other hand it is certain that mathematics generally, and
particularly geometry, owes its existence to the need which was felt of
learning something about the relations of real things to one another.
The very word geometry, which, of course, means earth-measuring,
proves this. For earth-measuring has to do with the possibilities of the
disposition of certain natural objects with respect to one another,
namely, with parts of the earth, measuring-lines, measuring-wands,
etc. It is clear that the system of concepts of axiomatic geometry alone
cannot make any assertions as to the relations of real objects of this
kind, which we will call practically-rigid bodies. To be able to make
such assertions, geometry must be stripped of its merely logical-formal
character by the co-ordination of real objects of experience with the
empty conceptual frame-work of axiomatic geometry. To accomplish
this, we need only add the proposition:—Solid bodies are related, with
respect to their possible dispositions, as are bodies in Euclidean geom-
etry of three dimensions. Then the propositions of Euclid contain
affirmations as to the relations of practically-rigid bodies.

Geometry thus completed is evidently a natural science; we may
in fact regard it as the most ancient branch of physics. Its affirmations
rest essentially on induction from experience, but not on logical infer-
ences only. We will call this completed geometry “practical geometry,”
and shall distinguish it in what follows from “purely axiomatic geom-
etry.” The question whether the practical geometry of the universe is
Euclidean or not has a clear meaning, and its answer can only be fur-
nished by experience. All linear measurement in physics is practical
geometry in this sense, so too is geodetic and astronomical linear
measurement, if we call to our help the law of experience that light is
propagated in a straight line, and indeed in a straight line in the sense
of practical geometry.

I attach special importance to the view of geometry which I have
just set forth, because without it I should have been unable to for-
mulate the theory of relativity. Without it the following reflection
would have been impossible:—In a system of reference rotating rela-
tively to an inert system, the laws of disposition of rigid bodies do not
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correspond to the rules of Euclidean geometry on account of the
Lorentz contraction; thus if we admit non-inert systems we must aban-
don Euclidean geometry. The decisive step in the transition to general
co-variant equations would certainly not have been taken if the above
interpretation had not served as a stepping-stone. If we deny the rela-
tion between the body of axiomatic Euclidean geometry and the prac-
tically-rigid body of reality, we readily arrive at the following view, which
was entertained by that acute and profound thinker, H. Poincaé:—
Euclidean geometry is distinguished above all other imaginable
axiomatic geometries by its simplicity. Now since axiomatic geometry
by itself contains no assertions as to the reality which can be experi-
enced, but can do so only in combination with physical laws, it should
be possible and reasonable—whatever may be the nature of reality—
to retain Euclidean geometry. For if contradictions between theory and
experience manifest themselves, we should rather decide to change
physical laws than to change axiomatic Euclidean geometry. If we deny
the relation between the practically-rigid body and geometry, we shall
indeed not easily free ourselves from the convention that Euclidean
geometry is to be retained as the simplest. Why is the equivalence of
the practically-rigid body and the body of geometry—which suggests
itself so readily—denied by Poincaré and other investigators? Simply
because under closer inspection the real solid bodies in nature are not
rigid, because their geometrical behaviour, that is, their possibilities of
relative disposition, depend upon temperature, external forces, etc.
Thus the original, immediate relation between geometry and physical
reality appears destroyed, and we feel impelled toward the following
more general view, which characterizes Poincaré’s standpoint. Geome-
try (G) predicates nothing about the relations of real things, but only
geometry together with the purport (P) of physical laws can do so.
Using symbols, we may say that only the sum of (G) � (P) is subject
to the control of experience. Thus (G) may be chosen arbitrarily, and
also parts of (P); all these laws are conventions. All that is necessary to
avoid contradictions is to choose the remainder of (P) so that (G) and
the whole of (P) are together in accord with experience. Envisaged in
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this way, axiomatic geometry and the part of natural law which has
been given a conventional status appear as epistemologically equivalent.

Sub specie aeterni Poincaré, in my opinion, is right. The idea of
the measuring-rod and the idea of the clock co-ordinated with it in
the theory of relativity do not find their exact correspondence in the
real world. It is also clear that the solid body and the clock do not in
the conceptual edifice of physics play the part of irreducible elements,
but that of composite structures, which may not play any independ-
ent part in theoretical physics. But it is my conviction that in the pres-
ent stage of development of theoretical physics these ideas must still
be employed as independent ideas; for we are still far from possessing
such certain knowledge of theoretical principles as to be able to give
exact theoretical constructions of solid bodies and clocks.

Further, as to the objection that there are no really rigid bodies in
nature, and that therefore the properties predicated of rigid bodies do
not apply to physical reality,—this objection is by no means so radi-
cal as might appear from a hasty examination. For it is not a difficult
task to determine the physical state of a measuring-rod so accurately
that its behaviour relatively to other measuring-bodies shall be suffi-
ciently free from ambiguity to allow it to be substituted for the “rigid”
body. It is to measuring-bodies of this kind that statements as to rigid
bodies must be referred.

All practical geometry is based upon a principle which is accessi-
ble to experience, and which we will now try to realise. We will call
that which is enclosed between two boundaries, marked upon a prac-
tically-rigid body, a tract. We imagine two practically-rigid bodies,
each with a tract marked out on it. These two tracts are said to be
“equal to one another” if the boundaries of the one tract can
be brought to coincide permanently with the boundaries of the other.
We now assume that:

If two tracts are found to be equal once and anywhere, they are
equal always and everywhere.

Not only the practical geometry of Euclid, but also its nearest gener-
alisation, the practical geometry of Riemann, and therewith the general
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theory of relativity, rest upon this assumption. Of the experimental
reasons which warrant this assumption I will mention only one. The
phenomenon of the propagation of light in empty space assigns a tract,
namely, the appropriate path of light, to each interval of local time,
and conversely. Thence it follows that the above assumption for tracts
must also hold good for intervals of clock-time in the theory of rela-
tivity. Consequently it may be formulated as follows:—If two ideal
clocks are going at the same rate at any time and at any place (being
then in immediate proximity to each other), they will always go at the
same rate, no matter where and when they are again compared with
each other at one place.—If this law were not valid for real clocks, the
proper frequencies for the separate atoms of the same chemical
element would not be in such exact agreement as experience demon-
strates. The existence of sharp spectral lines is a convincing experi-
mental proof of the above-mentioned principle of practical geometry.
This is the ultimate foundation in fact which enables us to speak with
meaning of the mensuration, in Riemann’s sense of the word, of the
four-dimensional continuum of space-time.

The question whether the structure of this continuum is Euclidean,
or in accordance with Riemann’s general scheme, or otherwise, is,
according to the view which is here being advocated, properly speak-
ing a physical question which must be answered by experience, and
not a question of a mere convention to be selected on practical
grounds. Riemann’s geometry will be the right thing if the laws of dis-
position of practically-rigid bodies are transformable into those of the
bodies of Euclid’s geometry with an exactitude which increases in pro-
portion as the dimensions of the part of space-time under considera-
tion are diminished.

It is true that this proposed physical interpretation of geometry
breaks down when applied immediately to spaces of sub-molecular
order of magnitude. But nevertheless, even in questions as to the con-
stitution of elementary particles, it retains part of its importance. For
even when it is a question of describing the electrical elementary par-
ticles constituting matter, the attempt may still be made to ascribe
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physical importance to those ideas of fields which have been physi-
cally defined for the purpose of describing the geometrical behaviour
of bodies which are large as compared with the molecule. Success alone
can decide as to the justification of such an attempt, which postulates
physical reality for the fundamental principles of Riemann’s geometry
outside of the domain of their physical definitions. It might possibly
turn out that this extrapolation has no better warrant than the extra-
polation of the idea of temperature to parts of a body of molecular
order of magnitude.

It appears less problematical to extend the ideas of practical geom-
etry to spaces of cosmic order of magnitude. It might, of course, be
objected that a construction composed of solid rods departs more and
more from ideal rigidity in proportion as its spatial extent becomes
greater. But it will hardly be possible, I think, to assign fundamental
significance to this objection. Therefore the question whether the uni-
verse is spatially finite or not seems to me decidedly a pregnant ques-
tion in the sense of practical geometry. I do not even consider it
impossible that this question will be answered before long by astron-
omy. Let us call to mind what the general theory of relativity teaches
in this respect. It offers two possibilities:—

1. The universe is spatially infinite. This can be so only if the
average spatial density of the matter in universal space, concen-
trated in the stars, vanishes, i.e. if the ratio of the total mass of the
stars to the magnitude of the space through which they are scat-
tered approximates indefinitely to the value zero when the spaces
taken into consideration are constantly greater and greater.

2. The universe is spatially finite. This must be so, if there is a
mean density of the ponderable matter in universal space differing
from zero. The smaller that mean density, the greater is the volume
of universal space.
I must not fail to mention that a theoretical argument can be adduced

in favour of the hypothesis of a finite universe. The general theory of rel-
ativity teaches that the inertia of a given body is greater as there are more
ponderable masses in proximity to it; thus it seems very natural to reduce

255

A STUBBORNLY PERSISTENT ILLUSION



the total effect of inertia of a body to action and reaction between it
and the other bodies in the universe, as indeed, ever since Newton’s
time, gravity has been completely reduced to action and reaction
between bodies. From the equations of the general theory of relativ-
ity it can be deduced that this total reduction of inertia to reciprocal
action between masses—as required by E. Mach, for example—is pos-
sible only if the universe is spatially finite.

On many physicists and astronomers this argument makes no
impression. Experience alone can finally decide which of the two pos-
sibilities is realised in nature. How can experience furnish an answer? At
first it might seem possible to determine the mean density of matter by
observation of that part of the universe which is accessible to our per-
ception. This hope is illusory. The distribution of the visible stars is
extremely irregular, so that we on no account may venture to set down
the mean density of star-matter in the universe as equal, let us say, to
the mean density in the Milky Way. In any case, however great the space
examined may be, we could not feel convinced that there were no more
stars beyond that space. So it seems impossible to estimate the mean
density. But there is another road, which seems to me more practicable,
although it also presents great difficulties. For if we inquire into the devi-
ations shown by the consequences of the general theory of relativity
which are accessible to experience, when these are compared with the
consequences of the Newtonian theory, we first of all find a deviation
which shows itself in close proximity to gravitating mass, and has been
confirmed in the case of the planet Mercury. But if the universe is spa-
tially finite there is a second deviation from the Newtonian theory,
which, in the language of the Newtonian theory, may be expressed
thus:—The gravitational field is in its nature such as if it were produced,
not only by the ponderable masses, but also by a mass-density of neg-
ative sign, distributed uniformly throughout space. Since this factitious
mass-density would have to be enormously small, it could make its pres-
ence felt only in gravitating systems of very great extent.

Assuming that we know, let us say, the statistical distribution of the
stars in the Milky Way, as well as their masses, then by Newton’s law we
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can calculate the gravitational field and the mean velocities which the
stars must have, so that the Milky Way should not collapse under the
mutual attraction of its stars, but should maintain its actual extent. Now
if the actual velocities of the stars, which can, of course, be measured,
were smaller than the calculated velocities, we should have a proof that
the actual attractions at great distances are smaller than by Newton’s law.
From such a deviation it could be proved indirectly that the universe is
finite. It would even be possible to estimate its spatial magnitude.

Can we picture to ourselves a three-dimensional universe which is
finite, yet unbounded?

The usual answer to this question is “No,” but that is not the right
answer. The purpose of the following remarks is to show that the
answer should be “Yes.” I want to show that without any extraordi-
nary difficulty we can illustrate the theory of a finite universe by means
of a mental image to which, with some practice, we shall soon grow
accustomed.

First of all, an obervation of epistemological nature. A geometrical-
physical theory as such is incapable of being directly pictured, being
merely a system of concepts. But these concepts serve the purpose of
bringing a multiplicity of real or imaginary sensory experiences into
connection in the mind. To “visualise” a theory, or bring it home to
one’s mind, therefore means to give a representation to that abundance
of experiences for which the theory supplies the schematic arrange-
ment. In the present case we have to ask ourselves how we can repre-
sent that relation of solid bodies with respect to their reciprocal
disposition (contact) which corresponds to the theory of a finite uni-
verse. There is really nothing new in what I have to say about this;
but innumerable questions addressed to me prove that the require-
ments of those who thirst for knowledge of these matters have not yet
been completely satisfied.

So, will the initiated please pardon me, if part of what I shall bring
forward has long been known?

What do we wish to express when we say that our space is infi-
nite? Nothing more than that we might lay any number whatever of
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bodies of equal sizes side by side without ever filling space. Suppose
that we are provided with a great many wooden cubes all of the same
size. In accordance with Euclidean geometry we can place them above,
beside, and behind one another so as to fill a part of space of any
dimensions; but this construction would never be finished; we could
go on adding more and more cubes without ever finding that there
was no more room. That is what we wish to express when we say that
space is infinite. It would be better to say that space is infinite in rela-
tion to practically-rigid bodies, assuming that the laws of disposition
for these bodies are given by Euclidean geometry.

Another example of an infinite continuum is the plane. On a
plane surface we may lay squares of cardboard so that each side of any
square has the side of another square adjacent to it. The construction
is never finished; we can always go on laying squares—if their laws of
disposition correspond to those of plane figures of Euclidean geome-
try. The plane is therefore infinite in relation to the cardboard squares.
Accordingly we say that the plane is an infinite continuum of two
dimensions, and space an infinite continuum of three dimensions.
What is here meant by the number of dimensions, I think I may
assume to be known.

Now we take an example of a two-dimensional continuum which
is finite, but unbounded. We imagine the surface of a large globe and
a quantity of small paper discs, all of the same size. We place one of
the discs anywhere on the surface of the globe. If we move the disc
about, anywhere we like, on the surface of the globe, we do not come
upon a limit or boundary anywhere on the journey. Therefore we say
that the spherical surface of the globe is an unbounded continuum.
Moreover, the spherical surface is a finite continuum. For if we stick
the paper discs on the globe, so that no disc overlaps another, the sur-
face of the globe will finally become so full that there is no room for
another disc. This simply means that the spherical surface of the globe
is finite in relation to the paper discs. Further, the spherical surface is
a non-Euclidean continuum of two dimensions, that is to say, the laws
of disposition for the rigid figures lying in it do not agree with those
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of the Euclidean plane. This can be shown in the following way. Place
a paper disc on the spherical surface, and around it in a circle place
six more discs, each of which is to be surrounded in turn by six discs,
and so on. If this construction is made on a plane surface, we have
an uninterrupted disposition in which there are six discs touching
every disc except those which lie on the outside.

On the spherical surface the construction also seems to promise
success at the outset, and the smaller the radius of the disc in pro-
portion to that of the sphere, the more promising it seems. But as the
construction progresses it becomes more and more patent that the dis-
position of the discs in the manner indicated, without interruption, is
not possible, as it should be possible by Euclidean geometry of the the
plane surface. In this way creatures which cannot leave the spherical
surface, and cannot even peep out from the spherical surface into
three-dimensional space, might discover, merely by experimenting
with discs, that their two-dimensional “space” is not Euclidean, but
spherical space.

From the latest results of the theory of relativity it is probable that
our three-dimensional space is also approximately spherical, that is,
that the laws of disposition of rigid bodies in it are not given by
Euclidean geometry, but approximately by spherical geometry, if only
we consider parts of space which are sufficiently great. Now this is the
place where the reader’s imagination boggles. “Nobody can imagine
this thing,” he cries indignantly. “It can be said, but cannot
be thought. I can represent to myself a spherical surface well enough,
but nothing analogous to it in three dimensions.”

We must try to surmount this barrier in the mind, and the patient
reader will see that it is by no means a particularly difficult task. For
this purpose we will first give our attention once more to the geometry
of two-dimensional spherical surfaces. In the adjoining figure let K be
the spherical surface, touched at S by a plane, E, which, for facility of
presentation, is shown in the drawing as a bounded surface. Let L be a
disc on the spherical surface. Now let us imagine that at the point N
of the spherical surface, diametrically opposite to S, there is a luminous

259

A STUBBORNLY PERSISTENT ILLUSION



point, throwing a shadow of the disc L upon the plane E. Every
point on the sphere has its shadow on the plane. If the disc on the
sphere K is moved, its shadow on the plane E also moves. When
the disc L is at S, it almost exactly coincides with its shadow. If it
moves on the spherical surface away from S upwards, the disc shadow

on the plane also moves away from S on the plane outwards, grow-
ing bigger and bigger. As the disc L approaches the luminous point
N, the shadow moves off to infinity, and becomes infinitely great.

Now we put the question. What are the laws of disposition of the
disc-shadows on the plane E ? Evidently they are exactly the same
as the laws of disposition of the discs L on the spherical surface. For
to each original figure on K there is a corresponding shadow figure on
E. If two discs on K are touching, their shadows on E also touch. The
shadow-geometry on the plane agrees with the the disc-geometry on
the sphere. If we call the disc-shadows rigid figures, then spherical
geometry holds good on the plane E with respect to these rigid fig-
ures. Moreover, the plane is finite with respect to the disc-shadows,
since only a finite number of the shadows can find room on the plane.

At this point somebody will say, “That is nonsense. The disc-
shadows are not rigid figures. We have only to move a two-foot rule
about on the plane E to convince ourselves that the shadows con-
stantly increase in size as they move away from S on the plane towards
infinity.” But what if the two-foot rule were to behave on the plane
E in the same way as the disc-shadows It would then be impossi-
ble to show that the shadows increase in size as they move away from
S; such an assertion would then no longer have any meaning what-
ever. In fact the only objective assertion that can be made about the
disc-shadows is just this, that they are related in exactly the same way
as are the rigid discs on the spherical surface in the sense of Euclid-
ean geometry.

We must carefully bear in mind that our statement as to the
growth of the disc-shadows, as they move away from S towards infin-
ity, has in itself no objective meaning, as long as we are unable to
employ Euclidean rigid bodies which can be moved about on the

L¿?
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plane E for the purpose of comparing the size of the disc-shadows.
In respect of the laws of disposition of the shadows the point S
has no special privileges on the plane any more than on the spher-
ical surface.

The representation given above of spherical geometry on the plane
is important for us, because it readily allows itself to be transferred to
the three-dimensional case.

Let us imagine a point S of our space, and a great number of small
spheres, which can all be brought to coincide with one another.
But these spheres are not to be rigid in the sense of Euclidean geom-
etry; their radius is to increase (in the sense of Euclidean geometry)
when they are moved away from S towards infinity, and this increase
is to take place in exact accordance with the same law as applies to
the increase of the radii of the disc-shadows on the plane.

After having gained a vivid mental image of the geometrical behav-
iour of our spheres, let us assume that in our space there are no
rigid bodies at all in the sense of Euclidean geometry, but only bod-
ies having the behaviour of our spheres. Then we shall have a vivid
representation of three-dimensional spherical space, or, rather of three-
dimensional spherical geometry. Here our spheres must be called
“rigid” spheres. Their increase in size as they depart from S is not to
be detected by measuring with measuring-rods, any more than in the
case of the disc-shadows on E, because the standards of measurement
behave in the same way as the spheres. Space is homogeneous, that is
to say, the same spherical configurations are possible in the environ-
ment of all points.* Our space is finite, because, in consequence of
the “growth” of the spheres, only a finite number of them can find
room in space.

*This is intelligible without calculation—but only for the two-
dimensional case—if we revert once more to the case of the disc on
the surface of the sphere.

In this way, by using as stepping-stones the practice in thinking
and visualisation which Euclidean geometry gives us, we have acquired
a mental picture of spherical geometry. We may without difficulty

L¿
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impart more depth and vigour to these ideas by carrying out special
imaginary constructions. Nor would it be difficult to represent the case
of what is called elliptical geometry in an analogous manner. My only
aim to-day has been to show that the human faculty of visualisation
is by no means bound to capitulate to non-Euclidean geometry.
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Selections from 
The Meaning 
of Relativity

Three hundred years before Einstein, Galileo Galilei developed
a theory of relativity that ultimately formed one of the pillars
of Sir Isaac Newton’s mechanics. In The Meaning of Relativity,

Einstein presents Galilean relativity as a precursor not only to New-
ton’s work, but to his own as well.

Galilean relativity is based on the simple and intuitive idea that
time flows constantly for all observers regardless of their state of
motion. Galileo thus anticipated Newton’s first law of motion: objects
in motion will maintain a constant speed and direction unless acted
upon by an outside force.

For all of the apparent mathematical complexity in The Meaning
of Relativity, Einstein’s goals are quite modest. He is simply demon-
strating that measurements on either stationary or moving frames will
both yield results that satisfy Newton’s laws of motion. He proceeds
to show at the end of the chapter that a different set of transforma-
tions, those suggested by Hendrik Lorentz, are required to make
Maxwell’s equations of electricity and magnetism work in moving
frames of reference.

The difference between Galileo’s transformations and those of
Lorentz is that the former result in a constant flow of time for all
observers, while the latter yield different rates of time for observers in
different states of motion.

But what do we mean by a “constant flow of time”? It is simple to
say that one event precedes another, or that they occur simultaneously,
but how do we measure time, except through time itself? Einstein
suggests using the reflection of an emitted light beam as a clock,
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postulating that light travels at the same speed regardless of the state
of motion of an observer. This simple thought experiment yields some
very surprising results.

For example, he finds that an observer measuring the events in a
train moving past him will see its inhabitants moving slowly: a slowed
heartbeat, a slowed wall-clock, and all other times slowed as well. Like-
wise, the person on the train thinks of himself as completely normal,
but sees the clock at the train station running slowly. But because light
must always travel at a constant speed, if time is related to the speed
of travel, then lengths along the direction of motion must be related
as well. In everyday life, these effects are not evident, only becoming
manifest when the speeds involved approach that of light. Thus, at nor-
mal speeds, Einstein and Galileo’s relativity behave exactly the same.

In this work, Einstein argues effectively that although virtually all
of our experiences suggest that Galileo and Newton were correct, uni-
fication of different branches of physics demand a new theory: special
relativity.
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SPACE AND TIME IN

PRE-RELATIVITY PHYSICS
The theory of relativity is intimately connected with the theory of
space and time. I shall therefore begin with a brief investigation of the
origin of our ideas of space and time, although in doing so I know
that I introduce a controversial subject. The object of all science,
whether natural science or psychology, is to co-ordinate our experi-
ences and to bring them into a logical system. How are our custom-
ary ideas of space and time related to the character of our experiences?

The experiences of an individual appear to us arranged in a series
of events; in this series the single events which we remember appear
to be ordered according to the criterion of “earlier” and “later,” which
cannot be analysed further. There exists, therefore, for the individual,
an I-time, or subjective time. This in itself is not measurable. I can,
indeed, associate numbers with the events, in such a way that a greater
number is associated with the later event than with an earlier one; but
the nature of this association may be quite arbitrary. This association
I can define by means of a clock by comparing the order of events
furnished by the clock with the order of the given series of events. We
understand by a clock something which provides a series of events
which can be counted, and which has other properties of which we
shall speak later.

By the aid of language different individuals can, to a certain
extent, compare their experiences. Then it turns out that certain sense
perceptions of different individuals correspond to each other, while for
other sense perceptions no such correspondence can be established. We
are accustomed to regard as real those sense perceptions which are com-
mon to different individuals, and which therefore are, in a measure,
impersonal. The natural sciences, and in particular, the most funda-
mental of them, physics, deal with such sense perceptions. The con-
ception of physical bodies, in particular of rigid bodies, is a relatively
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constant complex of such sense perceptions. A clock is also a body, or
a system, in the same sense, with the additional property that the series
of events which it counts is formed of elements all of which can be
regarded as equal.

The only justification for our concepts and system of concepts is
that they serve to represent the complex of our experiences; beyond
this they have no legitimacy. I am convinced that the philosophers have
had a harmful effect upon the progress of scientific thinking in remov-
ing certain fundamental concepts from the domain of empiricism,
where they are under our control, to the intangible heights of the a
priori. For even if it should appear that the universe of ideas cannot be
deduced from experience by logical means, but is, in a sense, a creation
of the human mind, without which no science is possible, nevertheless
this universe of ideas is just as little independent of the nature of our
experiences as clothes are of the form of the human body. This is par-
ticularly true of our concepts of time and space, which physicists have
been obliged by the facts to bring down from the Olympus of the a
priori in order to adjust them and put them in a serviceable condition.

We now come to our concepts and judgments of space. It is essen-
tial here also to pay strict attention to the relation of experience to
our concepts. It seems to me that Poincaré clearly recognized the truth
in the account he gave in his book, “La Science et l’Hypothèse.”
Among all the changes which we can perceive in a rigid body those
which can be cancelled by a voluntary motion of our body are marked
by their simplicity; Poincaré calls these, changes in position. By means
of simple changes in position we can bring two bodies into contact.
The theorems of congruence, fundamental in geometry, have to do
with the laws that govern such changes in position. For the concept
of space the following seems essential. We can form new bodies by
bringing bodies B, C, . . . up to body A; we say that we continue body
A. We can continue body A in such a way that it comes into contact
with any other body, X. The ensemble of all continuations of body A
we can designate as the “space of the body A.” Then it is true that all
bodies are in the “space of the (arbitrarily chosen) body A.” In this



sense we cannot speak of space in the abstract, but only of the “space
belonging to a body A.” The earth’s crust plays such a dominant rôle
in our daily life in judging the relative positions of bodies that it has
led to an abstract conception of space which certainly cannot be
defended. In order to free ourselves from this fatal error we shall speak
only of “bodies of reference,” or “space of reference.” It was only
through the theory of general relativity that refinement of these con-
cepts became necessary, as we shall see later.

I shall not go into detail concerning those properties of the space
of reference which lead to our conceiving points as elements of space,
and space as a continuum. Nor shall I attempt to analyse further the
properties of space which justify the conception of continuous series
of points, or lines. If these concepts are assumed, together with their
relation to the solid bodies of experience, then it is easy to say what
we mean by the three-dimensionality of space; to each point three
numbers, (co-ordinates), may be associated, in such a way
that this association is uniquely reciprocal, and that and vary
continuously when the point describes a continuous series of points
(a line).

It is assumed in pre-relativity physics that the laws of the config-
uration of ideal rigid bodies are consistent with Euclidean geometry.
What this means may be expressed as follows: Two points marked on
a rigid body form an interval. Such an interval can be oriented at rest,
relatively to our space of reference, in a multiplicity of ways. If, now,
the points of this space can be referred to co-ordinates in
such a way that the differences of the co-ordinates, of
the two ends of the interval furnish the same sum of squares,

(1)

for every orientation of the interval, then the space of reference is
called Euclidean, and the co-ordinates Cartesian.* It is sufficient,
indeed, to make this assumption in the limit for an infinitely small
interval. Involved in this assumption there are some which are rather

s2 � ¢x 2
1 � ¢x 2

2 � ¢x 2
3

¢x1, ¢x2, ¢x3,
x1, x2, x3,

x3x1, x2,
x1, x2, x3
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less special, to which we must call attention on account of their fun-
damental significance. In the first place, it is assumed that one can
move an ideal rigid body in an arbitrary manner. In the second place,
it is assumed that the behaviour of ideal rigid bodies towards orienta-
tion is independent of the material of the bodies and their changes of
position, in the sense that if two intervals can once be brought into
coincidence, they can always and everywhere be brought into coinci-
dence. Both of these assumptions, which are of fundamental impor-
tance for geometry and especially for physical measurements, naturally
arise from experience; in the theory of general relativity their validity
needs to be assumed only for bodies and spaces of reference which are
infinitely small compared to astronomical dimensions.

The quantity s we call the length of the interval. In order that this
may be uniquely determined it is necessary to fix arbitrarily the length
of a definite interval; for example, we can put it equal to 1 (unit of
length). Then the lengths of all other intervals may be determined. If
we make the linearly dependent upon a parameter 

we obtain a line which has all the properties of the straight lines of
the Euclidean geometry. In particular, it easily follows that by lay-
ing off n times the interval s upon a straight line, an interval of
length is obtained. A length, therefore, means the result of a
measurement carried out along a straight line by means of a unit
measuring rod. It has a significance which is as independent of the
system of co-ordinates as that of a straight line, as will appear in the
sequel.

We come now to a train of thought which plays an analogous rôle
in the theories of special and general relativity. We ask the question:
besides the Cartesian co-ordinates which we have used are there other
equivalent co-ordinates? An interval has a physical meaning which is
independent of the choice of co-ordinates; and so has the spherical
surface which we obtain as the locus of the end points of all equal
intervals that we lay off from an arbitrary point of our space of refer-
ence. If as well as ( from 1 to 3) are Cartesian co-ordinates ofnx¿nxn

n � s

xn � an � lbn,
l,xn
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our space of reference, then the spherical surface will be expressed in
our two systems of co-ordinates by the equations

(2)

(2a)

How must the be expressed in terms of the in order that equa-
tions (2) and (2a) may be equivalent to each other? Regarding the 
expressed as functions of the we can write, by Taylor’s theorem, for
small values of the 

If we substitute (2a) in this equation and compare with (1), we see
that the must be linear functions of the If we therefore put

(3)

or

(3a)

then the equivalence of equations (2) and (2a) is expressed in the form

independent of (2b)

It therefore follows that must be a constant. If we put (2b)
and (3a) furnish the conditions

(4)

in which or according as or The
conditions (4) are called the conditions of orthogonality, and the trans-
formations (3), (4), linear orthogonal transformations. If we stipulate
that shall be equal to the square of the length in every
system of co-ordinates, and if we always measure with the same unit
scale, then must be equal to 1. Therefore the linear orthogonal trans-
formations are the only ones by means of which we can pass from one
Cartesian system of co-ordinates in our space of reference to another.
We see that in applying such transformations the equations of a
straight line become equations of a straight line. Reversing equations

l

s2 � g¢x 2
n

a � b.a � bdab � 0,dab � 1,

a
n

bnabnb � dab

l � 1,l
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(3a) by multiplying both sides by and summing for all the we
obtain

(5)

The same coefficients, b, also determine the inverse substitution of
Geometrically, is the cosine of the angle between the axis

and the axis.
To sum up, we can say that in the Euclidean geometry there are (in

a given space of reference) preferred systems of co-ordinates, the Carte-
sian systems, which transform into each other by linear orthogonal trans-
formations. The distance s between two points of our space of reference,
measured by a measuring rod, is expressed in such co-ordinates in a par-
ticularly simple manner. The whole of geometry may be founded upon this
conception of distance. In the present treatment, geometry is related to
actual things (rigid bodies), and its theorems are statements concerning
the behaviour of these things, which may prove to be true or false.

One is ordinarily accustomed to study geometry divorced from
any relation between its concepts and experience. There are advantages
in isolating that which is purely logical and independent of what is,
in principle, incomplete empiricism. This is satisfactory to the pure
mathematician. He is satisfied if he can deduce his theorems from
axioms correctly, that is, without errors of logic. The questions as to
whether Euclidean geometry is true or not does not concern him. But
for our purpose it is necessary to associate the fundamental concepts
of geometry with natural objects; without such an association geom-
etry is worthless for the physicist. The physicist is concerned with the
question as to whether the theorems of geometry are true or not. That
Euclidean geometry, from this point of view, affirms something more
than the mere deductions derived logically from definitions may be
seen from the following simple consideration.

Between n points of space there are distances, 

between these and the 3n co-ordinates we have the relations

s 2
mn � 1x11m2 � x11n2 2

2 � 1x21m2 � x21n2 2
2 � . . .

smn;
n 1n � 12

2

xa

x¿nbna¢xn.

a bnb¢x¿n � a
na

bnabnb¢xa �a
a

dab¢xa � ¢xb

n’s,bnb
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From these equations the 3n co-ordinates may be elim-

inated, and from this elimination at least equations in

the will result.* Since the are measurable quantities, and by def-
inition are independent of each other, these relations between the 
are not necessary a priori.

From the foregoing it is evident that the equations of transfor-
mation (3), (4) have a fundamental significance in Euclidean geome-
try, in that they govern the transformation from one Cartesian system
of co-ordinates to another. The Cartesian systems of co-ordinates are
characterized by the property that in them the measurable distance
between two points, s, is expressed by the equation

If and are two Cartesian systems of co-ordinates, then

The right-hand side is identically equal to the left-hand side on
account of the equations of the linear orthogonal transformation, and
the right-hand side differs from the left-hand side only in that the 
are replaced by the This is expressed by the statement that 
is an invariant with respect to linear orthogonal transformations. It is
evident that in the Euclidean geometry only such, and all such, quan-
tities have an objective significance, independent of the particular
choice of the Cartesian co-ordinates, as can be expressed by an invari-
ant with respect to linear orthogonal transformations. This is the rea-
son that the theory of invariants, which has to do with the laws that
govern the form of invariants, is so important for analytical geometry.

As a second example of a geometrical invariant, consider a vol-
ume. This is expressed by

V � � � �dx1dx2dx3.

g¢x2
nx¿n.

xn

a ¢x 2
n � a ¢x¿ 2

n .

K ¿1xn2K 1xn2

s2 � a ¢x 2
n .

smn

smnsmn

n 1n � 12

2
� 3n

n 1n � 12

2
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By means of Jacobi’s theorem we may write

where the integrand in the last integral is the functional determinant
of the with respect to the and this by (3) is equal to the deter-
minant of the coefficients of substitution, If we form the
determinant of the from equation (4), we obtain, by means of the
theorem of multiplication of determinants,

(6)

If we limit ourselves to those transformations which have the deter-
minant (and only these arise from continuous variations of the
systems of co-ordinates) then V is an invariant.

Invariants, however, are not the only forms by means of which we
can give expression to the independence of the particular choice of the
Cartesian co-ordinates. Vectors and tensors are other forms of expres-
sion. Let us express the fact that the point with the current co-ordinates

lies upon a straight line. We have

( from 1 to 3).

Without limiting the generality we can put

If we multiply the equations by (compare (3a) and (5)) and
sum for all the we get

where we have written

These are the equations of straight lines with respect to a second
Cartesian system of co-ordinates They have the same form as the
equations with respect to the original system of co-ordinates. It is there-
fore evident that straight lines have a significance which is independent

K ¿.

B¿b � a
n

bbnBn; A¿b � a
n
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nxn � An � lBn
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of the system of co-ordinates. Formally, this depends upon the fact
that the quantities are transformed as the compo-
nents of an interval, The ensemble of three quantities, defined
for every system of Cartesian co-ordinates, and which transform as the
components of an interval, is called a vector. If the three components
of a vector vanish for one system of Cartesian co-ordinates, they vanish
for all systems, because the equations of transformation are homoge-
neous. We can thus get the meaning of the concept of a vector without
referring to a geometrical representation. This behaviour of the equa-
tions of a straight line can be expressed by saying that the equation
of a straight line is co-variant with respect to linear orthogonal trans-
formations.

We shall now show briefly that there are geometrical entities which
lead to the concept of tensors. Let be the centre of a surface of the
second degree, P any point on the surface, and the projections of
the interval upon the co-ordinate axes. Then the equation of the
surface is

In this, and in analogous cases, we shall omit the sign of summation,
and understand that the summation is to be carried out for those
indices that appear twice. We thus write the equation of the surface

The quantities determine the surface completely, for a given posi-
tion of the centre, with respect to the chosen system of Cartesian co-
ordinates. From the known law of transformation for the (3a) for
linear orthogonal transformations, we easily find the law of transfor-
mation for the 

This transformation is homogeneous and of the first degree in the 
On account of this transformation, the are called components of
a tensor of the second rank (the latter on account of the double index).
If all the components, of a tensor with respect to any system ofamn,

amn

amn.
a¿sr � bsmbrnamn.

amn*:

jn

amn

amnjmjn � 1.

a amnjmjn � 1.

P0 P
jn

P0

¢xn.
1xn � An2 � lBn
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Cartesian co-ordinates vanish, they vanish with respect to every other
Cartesian system. The form and the position of the surface of the sec-
ond degree is described by this tensor (a).

Tensors of higher rank (number of indices) may be defined ana-
lytically. It is possible and advantageous to regard vectors as tensors of
rank 1, and invariants (scalars) as tensors of rank 0. In this respect,
the problem of the theory of invariants may be so formulated: accord-
ing to what laws may new tensors be formed from given tensors? We
shall consider these laws now, in order to be able to apply them later.
We shall deal first only with the properties of tensors with respect to
the transformation from one Cartesian system to another in the same
space of reference, by means of linear orthogonal transformations. As
the laws are wholly independent of the number of dimensions, we
shall leave this number, n, indefinite at first.

Definition. If an object is defined with respect to every system of
Cartesian co-ordinates in a space of reference of n dimensions by the

numbers then these numbers are
the components of a tensor of rank if the transformation law is

(7)
Remark. From this definition it follows that

(8)
is an invariant, provided that (B), (C ), (D) . . . are vectors. Conversely,
the tensor character of (A) may be inferred, if it is known that the
expression (8) leads to an invariant for an arbitrary choice of the vec-
tors (B), (C ), etc.

Addition and Subtraction. By addition and subtraction of the cor-
responding components of tensors of the same rank, a tensor of equal
rank results:

(9)
The proof follows from the definition of a tensor given above.

Multiplication. From a tensor of rank and a tensor of rank 
we may obtain a tensor of rank by multiplying all the compo-
nents of the first tensor by all the components of the second tensor:

(10)�mnr . . . abg . . . � Amnr . . . Babg . . .

a � b

ba

Amnr . . . � Bmnr . . . � Cmnr . . .

Amnr . . . BmCnDr . . .

A¿m¿n¿r¿ . . . � bm¿mbn¿nbr¿r . . . Amnr . . .
a

1a � number of indices2,Amnr . . .na

274

SELECTIONS FROM THE MEANING OF REL ATIVIT Y



Contraction. A tensor of rank may be obtained from one
of rank by putting two definite indices equal to each other and then
summing for this single index:

(11)

The proof is

In addition to these elementary rules of operation there is also the
formation of tensors by differentiation (“Erweiterung”):

(12)

New tensors, in respect to linear orthogonal transformations, may
be formed from tensors according to these rules of operation.

Symmetry Properties of Tensors. Tensors are called symmetrical or
skew-symmetrical in respect to two of their indices, and , if both
the components which result from interchanging the indices and 
are equal to each other or equal with opposite signs.

Condition for symmetry:
Condition for skew-symmetry:
Theorem. The character of symmetry or skew-symmetry exists

independently of the choice of co-ordinates, and in this lies its impor-
tance. The proof follows from the equation defining tensors.

Special Tensors.
I. The quantities (4) are tensor components (fundamental

tensor).
Proof. If in the right-hand side of the equation of transforma-

tion we substitute for the quantities 
(which are equal to 1 or 0 according as or we get

The justification for the last sign of equality becomes evident if one
applies (4) to the inverse substitution (5).

II. There is a tensor skew-symmetrical with respect to
all pairs of indices, whose rank is equal to the number of dimensions, n,

1dmnr . . .2

A¿mn � bmabna � dmn.
a � b2,a � b

dabAabA¿mn � bmabnbAab,

drs

Amnr � �Anmr.
Amnr � Anmr.

nm

nm

Tmnr . . . a �
0Amnr . . .

0xa

� brg . . . Aaag . . .
A¿mmr . . . � bmabmbbrg . . . Aabg . . . � dabbrg . . . Aabg . . .

Tr . . . � Ammr . . . a�a
m

Ammr . . .b

a

a � 2
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and whose components are equal to or according as 
is an even or odd permutation of 123 . . .

The proof follows with the aid of the theorem proved above 
These few simple theorems form the apparatus from the theory of

invariants for building the equations of pre-relativity physics and the
theory of special relativity.

We have seen that in pre-relativity physics, in order to specify rela-
tions in space, a body of reference, or a space of reference, is required,
and, in addition, a Cartesian system of co-ordinates. We can fuse both
these concepts into a single one by thinking of a Cartesian system of
co-ordinates as a cubical frame-work formed of rods each of unit
length. The co-ordinates of the lattice points of this frame are integral
numbers. It follows from the fundamental relation

(13)
that the members of such a space-lattice are all of unit length. To spec-
ify relations in time, we require in addition a standard clock placed,
say, at the origin of our Cartesian system of co-ordinates or frame of
reference. If an event takes place anywhere we can assign to it three co-
ordinates, and a time t, as soon as we have specified the time of the
clock at the origin which is simultaneous with the event. We there-
fore give (hypothetically) an objective significance to the statement of
the simultaneity of distant events, while previously we have been con-
cerned only with the simultaneity of two experiences of an individual.
The time so specified is at all events independent of the position of
the system of co-ordinates in our space of reference, and is therefore
an invariant with respect to the transformation (3).

It is postulated that the system of equations expressing the laws of
pre-relativity physics is co-variant with respect to the transformation
(3), as are the relations of Euclidean geometry. The isotropy and homo-
geneity of space is expressed in this way.* We shall now consider some
of the more important equations of physics from this point of view.

xn,

s2 � ¢x 2
1 � ¢x 2

2 � ¢x 2
3

�brs� � 1.

mnr . . .�1�1
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*The laws of physics could be expressed, even in case there were a preferred direction in space, in such a way as to be co-variant with respect
to the transformation (3); but such an expression would in this case be unsuitable. If there were a preferred direction in space it would simplify
the description of natural phenomena to orient the system of co-ordinates in a definite way with respect to this direction. But if, on the other
hand, there is no unique direction in space it is not logical to formulate the laws of nature in such a way as to conceal the equivalence of systems
of co-ordinates that are oriented differently. We shall meet with this point of view again in the theories of special and general relativity.     



The equations of motion of a material particle are

(14)

is a vector; dt, and therefore also an invariant; thus is

a vector; in the same way it may be shown that is a vector. In

general, the operation of differentiation with respect to time does not
alter the tensor character. Since m is an invariant (tensor of rank 0),

is a vector, or tensor of rank 1 (by the theorem of the mul-

tiplication of tensors). If the force has a vector character, the same

holds for the difference These equations of motion

are therefore valid in every other system of Cartesian co-ordinates in
the space of reference. In the case where the forces are conservative we
can easily recognize the vector character of For a potential energy,

exists, which depends only upon the mutual distances of the par-
ticles, and is therefore an invariant. The vector character of the force,

is then a consequence of our general theorem about the

derivative of a tensor of rank 0.
Multiplying by the velocity, a tensor of rank 1, we obtain the ten-

sor equation

By contraction and multiplication by the scalar dt we obtain the equa-
tion of kinetic energy

If denotes the difference of the co-ordinates of the material par-
ticle and a point fixed in space, then the have vector character. We

evidently have so that the equations of motion of the
d 2xn
dt 2 �

d 2jn

dt 2 ,

jn

jn

d a
mq 2

2
b � Xndxn.

am
d 2xn
dt 2 � X nb 

dxm
dt

� 0.

Xn � �
0£
0xn

,

£,
1Xn2.

am
d 2xn
dt 2 � X nb.

1Xn2

am
d 2xn
dt 2 b

a
d 2xn
dt 2 b

a
dxn
dt
b

1

dt
,1dxn2

m
d 2xn
dt 2 � X n
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particle may be written

Multiplying this equation by we obtain a tensor equation

Contracting the tensor on the left and taking the time average we
obtain the virial theorem, which we shall not consider further. By
interchanging the indices and subsequent subtraction, we obtain, after
a simple transformation, the theorem of moments,

(15)

It is evident in this way that the moment of a vector is not a vec-
tor but a tensor. On account of their skew-symmetrical character there
are not nine, but only three independent equations of this system. The
possibility of replacing skew-symmetrical tensors of the second rank
in space of three dimensions by vectors depends upon the formation
of the vector

If we multiply the skew-symmetrical tensor of rank 2 by the spe-
cial skew-symmetrical tensor introduced above, and contract twice,
a vector results whose components are numerically equal to those of
the tensor. These are the so-called axial vectors which transform dif-
ferently, from a right-handed system to a left-handed system, from the

There is a gain in picturesqueness in regarding a skew-symmetrical
tensor of rank 2 as a vector in space of three dimensions, but it does
not represent the exact nature of the corresponding quantity so well
as considering it a tensor.

We consider next the equations of motion of a continuous
medium. Let be the density, the velocity components considered
as functions of the co-ordinates and the time, the volume forcesXn

unr

¢xn.

d

Am � 1
2 Astdstm.

d
dt
cm ajm

djn
dt

� jn 
djm
dt
b d � jmX n � jn Xm

am
d 2jn

dt 2 � X nb jm � 0.

jm

m
d 2jn

dt 2 � X n � 0.
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per unit of mass, and the stresses upon a surface perpendicular to
the -axis in the direction of increasing Then the equations of
motion area, by Newton’s law,

in which is the acceleration of the particle which at time t has the 

co-ordinates If we express this acceleration by partial differential
coefficients, we obtain, after dividing by ,

(16)

We must show that this equation holds independently of the spe-
cial choice of the Cartesian system of co-ordinates. is a vector, and

therefore is also a vector. is a tensor of rank 2, is a

tensor of rank 3. The second term on the left results from contraction
in the indices The vector character of the second term on the
right is obvious. In order that the first term on the right may also be
a vector it is necessary for to be a tensor. Then by differentiation

and contraction results, and is therefore a vector, as it also is after

multiplication by the reciprocal scalar That is a tensor, and

therefore transforms according to the equation

is proved in mechanics by integrating this equation over an infinitely
small tetrahedron. It is also proved there, by application of the theo-
rem of moments to an infinitely small parallelepipedon, that

and hence that the tensor of the stress is a symmetrical
tensor. From what has been said it follows that, with the aid of the
rules given above, the equation is co-variant with respect to orthogo-
nal transformations in space (rotational transformations); and the rules
according to which the quantities in the equation must be transformed
in order that the equation may be co-variant also become evident.

pns � psn,

p¿mn � bmabnbpab,

pns
1
r

.

0pns
0xs

pns

s, t.

0un
0xs

ut
0un
0xs

0un
0t

1un2

0un
0t

�
0un
0xs
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1
r

 
0pns
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The co-variance of the equation of continuity,

(17)

requires, from the foregoing, no particular discussion.
We shall also test for co-variance the equations which express the

dependence of the stress components upon the properties of the mat-
ter, and set up these equations for the case of a compressible viscous
fluid with the aid of the conditions of co-variance. If we neglect the
viscosity, the pressure, p, will be a scalar, and will depend only upon
the density and the temperature of the fluid. The contribution to the
stress tensor is then evidently

in which is the special symmetrical tensor. This term will also be
present in the case of a viscous fluid. But in this case there will also
be pressure terms, which depend upon the space derivatives of the 
We shall assume that this dependence is a linear one. Since these terms
must be symmetrical tensors, the only ones which enter will be

For physical reasons (no slipping) it is assumed

that for symmetrical dilatations in all directions, i.e. when

there are no frictional forces present, from which it follows that

If only is different from zero, let by

which is determined. We then obtain for the complete stress tensor,

(18)

The heuristic value of the theory of invariants, which arises from
the isotropy of space (equivalence of all directions), becomes evident
from this example.
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We consider, finally, Maxwell’s equations in the form which are
the foundation of the electron theory of Lorentz.

(19)

(20)

i is a vector, because the current density is defined as the density
of electricity multiplied by the vector velocity of the electricity.
According to the first three equations it is evident that e is also to be
regarded as a vector. Then h cannot be regarded as a vector.* The equa-
tions may, however, easily be interpreted if h is regarded as a skew-
symmetrical tensor of the second rank. Accordingly, we write

in place of respectively. Paying attention to the
skew-symmetry of the first three equations of (19) and (20) may
be written in the form

(19a)

(20a)

In contrast to e, h appears as a quantity which has the same type of
symmetry as an angular velocity. The divergence equations then take
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* These considerations will make the reader familiar with tensor operations without the special difficulties of the four-dimensional
treatment; corresponding considerations in the theory of special relativity (Minkowski’s interpretation of the field) will then offer fewer
difficulties.        



the form

(19b)

(20b)

The last equation is a skew-symmetrical tensor equation of the third
rank (the skew-symmetry of the left-hand side with respect to every
pair of indices may easily be proved, if attention is paid to the skew-
symmetry of This notation is more natural than the usual one,
because, in contrast to the latter, it is applicable to Cartesian left-
handed systems as well as to right-handed systems without change of
sign.     

hmn2.

0hmn
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Selections from 
The Evolution of Physics

During the first half of the twentieth century, quantum theory
was transforming the landscape of physics, much as the theory
of electromagnetism did a century earlier. In The Evolution of

Physics, Albert Einstein and Leopold Infeld describe this revolution from
the eye of the storm. Today we have grown so accustomed to the idea
of nanotechnology and microelectronics, technologies which could not
exist without quantum mechanics, that it is easy to forget what a
monumental shift in our understanding is required to think in quan-
tum terms.

In the continuous picture, a piece of iron, for example, may have
any mass whatsoever. In the quantum picture, this is shown to be an
illusion. Each lump of iron has a certain number of atoms in it, and
each atom has a fixed mass. Another lump can only differ by an inte-
ger number of atoms and thus, by “quantized” masses. Atoms them-
selves are made of still smaller quantized elements, protons and
neutrons. And that’s not even the end of it! About two decades after
the publication of The Evolution of Physics, Murray Gell-Mann and
Kazuhiko Nishijima proposed that protons and neutrons were made
of yet smaller quantized particles known as quarks.

The idea that particles may be only divided a finite number of
times before reaching the atomic scale was not a new one; it had its
origins as far back as Democritus and the early Greek atomists. The
strength of modern quantum theory came, rather, from the properties
ascribed to microscopic particles. While on the human scale, we nor-
mally say that a particle has a well-defined position and speed, we can
make no such statements on the quantum scale. Instead, particles are
defined by their probability waves. One of the strangest examples of
quantum weirdness comes from the idea that prior to observation by
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an experiment, an electron does not have a well-defined position, but
that by observing it, we “force” it into a particular state. Let’s be clear
that quantum theory doesn’t say that we don’t know the position prior
to observations, but that such a thing as definite position really doesn’t
exist!

The amazing thing is that while the microscopic world is governed
by statistics, the macroscopic world seems governed by Newton’s laws,
which are themselves deterministic. How can that be, since, in the
end, macroscopic objects are made of protons, neutrons, and electrons?
We see the same effect when we think about the air in a room. While
the individual molecules fly around in a haphazard manner, on the
human scale, they normally seem much steadier. In a sense, the dis-
tinction between the wave properties and particle properties of mat-
ter are really just a function of physical scale. The quantum theory
shows that on the smallest scales, particles look more and more wave-
like, and are governed more and more by statistics.

This wave-particle duality doesn’t just exist for objects like elec-
trons and protons, however. Isaac Newton originally proposed that
light must have particle properties, a theory which was rejected in
the nineteenth century when light was observed to exhibit interfer-
ence patterns, a property of waves. Ultimately, light was understood
to have both wave properties, as with radio waves, and quantized par-
ticle properties, which came to be known as photons. Modesty must
have prevented Einstein from noting that it was his own interpretation
of the photoelectric effect that ultimately gave rise to the modern par-
ticle picture of light. In this experiment, an ultraviolet beam is shined
on metal, and electrons are ejected, a very particle-like behavior. His
1905 paper describing this effect earned him the Nobel Prize in 1921.

Einstein’s Evolution of Physics gives us an insight into the state of
science in the early twentieth century, including glimpses into his own
considerable contributions. Nearly seventy years later, though they
have refined their models considerably, physicists are still dealing
with the fallout of the weirdness born from the quantum picture of
the universe.
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FIELD, RELATIVITY
The field as representation . . . The two pillars of the field theory . . . The
reality of the field . . . Field and ether . . . The mechanical scaffold . . .
Ether and motion . . . Time, distance, relativity . . . Relativity and me-
chanics . . . The time-space continuum . . . General relativity . . . Outside
and inside the elevator . . . Geometry and experiment . . . General rela-
tivity and its verification . . . Field and matter

THE FIELD AS REPRESENTATION

DURING the second half of the nineteenth century new and revolu-
tionary ideas were introduced into physics; they opened the way to a
new philosophical view, differing from the mechanical one. The results
of the work of Faraday, Maxwell, and Hertz led to the development of
modern physics, to the creation of new concepts, forming a new pic-
ture of reality.

Our task now is to describe the break brought about in science
by these new concepts and to show how they gradually gained clarity
and strength. We shall try to reconstruct the line of progress logically,
without bothering too much about chronological order.

The new concepts originated in connection with the phenomena
of electricity, but it is simpler to introduce them, for the first time,
through mechanics. We know that two particles attract each other and
that this force of attraction decreases with the square of the distance.
We can represent this fact in a new way, and shall do so even though
it is difficult to understand the advantage of this. The small circle in
our drawing on page 286 represents an attracting body, say, the sun.
Actually, our diagram should be imagined as a model in space and not
as a drawing on a plane. Our small circle, then, stands for a sphere in
space, say, the sun. A body, the so-called test body, brought some-
where within the vicinity of the sun will be attracted along the line
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connecting the centers of the two bodies. Thus the lines in our draw-
ing indicate the direction of the attracting force of the sun for differ-
ent positions of the test body. The arrow on each line shows that the
force is directed toward the sun; this means the force is an attraction.
These are the lines of force of the gravitational field. For the moment,
this is merely a name and there is no reason for stressing it further.
There is one characteristic feature of our drawing which will be empha-
sized later. The lines of force are constructed in space, where no matter
is present. For the moment, all the lines of force, or briefly speaking,
the field, indicate only how a test body would behave if brought into
the vicinity of the sphere for which the field is constructed.

The lines in our space model are always perpendicular to the sur-
face of the sphere. Since they diverge from one point, they are dense
near the sphere and become less and less so farther away. If we increase
the distance from the sphere twice or three times, then the density of
the lines, in our space-model, though not in the drawing, will be four
or nine times less. Thus the lines serve a double purpose. On the one
hand they show the direction of the force acting on a body brought
into the neighborhood of the sphere-sun. On the other hand the den-
sity of the lines of force in space shows how the force varies with the
distance. The drawing of the field, correctly interpreted, represents the
direction of the gravitational force and its dependence on distance. One
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can read the law of gravitation from such a drawing just as well as from
a description of the action in words, or in the precise and economical
language of mathematics. This field representation, as we shall call it, may
appear clear and interesting but there is no reason to believe that it
marks any real advance. It would be quite difficult to prove its useful-
ness in the case of gravitation. Some may, perhaps, find it helpful to
regard these lines as something more than drawings, and to imagine the
real actions of force passing through them. This may be done, but then
the speed of the actions along the lines of force must be assumed as
infinitely great! The force between two bodies, according to Newton’s
law, depends only on distance; time does not enter the picture. The force
has to pass from one body to another in no time! But, as motion with
infinite speed cannot mean much to any reasonable person, an attempt
to make our drawing something more than a model leads nowhere.

We do not intend, however, to discuss the gravitational problem
just now. It served only as an introduction, simplifying the explana-
tion of similar methods of reasoning in the theory of electricity.

We shall begin with a discussion of the experiment which created
serious difficulties in our mechanical interpretation. We had a current
flowing through a wire circuit in the form of a circle. In the middle
of the circuit was a magnetic needle. The moment the current began
to flow a new force appeared, acting on the magnetic pole, and per-
pendicular to any line connecting the wire and the pole. This force,
if caused by a circulating charge, depended, as shown by Rowland’s
experiment, on the velocity of the charge. These experimental facts
contradicted the philosophical view that all forces must act on the line
connecting the particles and can depend only upon distance.

The exact expression for the force of a current acting on a mag-
netic pole is quite complicated, much more so, indeed, than the
expression for gravitational forces. We can, however, attempt to visu-
alize the actions just as we did in the case of a gravitational force. Our
question is: with what force does the current act upon a magnetic pole
placed somewhere in its vicinity? It would be rather difficult to
describe this force in words. Even a mathematical formula would be
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complicated and awkward. It is best to represent all we know about
the acting forces by a drawing, or rather by a spatial model, with lines
of force. Some difficulty is caused by the fact that a magnetic pole
exists only in connection with another magnetic pole, forming a
dipole. We can, however, always imagine the magnetic needle of such
length that only the force acting upon the pole nearer the current has
to be taken into account. The other pole is far enough away for the
force acting upon it to be negligible. To avoid ambiguity we shall say
that the magnetic pole brought nearer to the wire is the positive one.

The character of the force acting upon the positive magnetic pole
can be read from our drawing.
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First we notice an arrow near the wire indicating the direction of
the current, from higher to lower potential. All other lines are just
fines of force belonging to this current and lying on a certain plane.
If drawn properly, they tell us the direction of the force vector repre-
senting the action of the current on a given positive magnetic pole as
well as something about the length of this vector. Force, as we know,
is a vector and to determine it we must know its direction as well as
its length. We are chiefly concerned with the problem of the direction
of the force acting upon a pole. Our question is: how can we find,
from the drawing, the direction of the force, at any point in space?

The rule for reading the direction of a force from such a model
is not as simple as in our previous example, where the lines of force



were straight. In our next diagram only one line of force is drawn in
order to clarify the procedure. The force vector lies on the tangent to
the line of force, as indicated. The arrow of the force vector and the
arrows on the line of force point in the same direction. Thus this is
the direction in which the force acts on a magnetic pole at this point.
A good drawing, or rather a good model, also tells us something about
the length of the force vector at any point. This vector has to be longer
where the lines are denser, i.e., near the wire, shorter where the lines
are less dense, i.e., far from the wire.

In this way, the lines of force, or in other words, the field, enable
us to determine the forces acting on a magnetic pole at any point in
space. This, for the time being, is the only justification for our elab-
orate construction of the field. Knowing what the field expresses, we
shall examine with a far deeper interest the lines of force correspon-
ding to the current. These lines are circles surrounding the wire and
lying on the plane perpendicular to that in which the wire is situated.
Reading the character of the force from the drawing we come once
more to the conclusion that the force acts in a direction perpendicular
to any line connecting the wire and the pole, for the tangent to a circle
is always perpendicular to its radius. Our entire knowledge of the
acting forces can be summarized in the construction of the field.
We sandwich the concept of the field between that of the current and
that of the magnetic pole in order to represent the acting forces in a
simple way.
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Every current is associated with a magnetic field, i.e., a force
always acts on a magnetic pole brought near the wire through which
a current flows. We may remark in passing that this property enables
us to construct sensitive apparatus for detecting the existence of a cur-
rent. Once having learned how to read the character of the magnetic
forces from the field model of a current, we shall always draw the field
surrounding the wire through which the current flows, in order to rep-
resent the action of the magnetic forces at any point in space. Our
first example is the so-called solenoid. This is, in fact, a coil of wire
as shown in the drawing. Our aim is to learn, by experiment, all we
can about the magnetic field associated with the current flowing
through a solenoid and to incorporate this knowledge in the con-
struction of a field. A drawing represents our result. The curved lines
of force are closed, and surround the solenoid in a way characteristic
of the magnetic field of a current.
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The field of a bar magnet can be represented in the same way as
that of a current. Another drawing shows this. The lines of force are
directed from the positive to the negative pole. The force vector
always lies on the tangent to the line of force and is longest near the
poles because the density of the lines is greatest at these points. The
force vector represents the action of the magnet on a positive mag-
netic pole. In this case the magnet and not the current is the “source”
of the field.



Our last two drawings should be carefully compared. In the first,
we have the magnetic field of a current flowing through a solenoid;
in the second, the field of a bar magnet. Let us ignore both the sole-
noid and the bar and observe only the two outside fields. We imme-
diately notice that they are of exactly the same character; in each
case the lines of force lead from one end of the solenoid or bar to
the other.

The field representation yields its first fruit! It would be rather dif-
ficult to see any strong similarity between the current flowing through
a solenoid and a bar magnet if this were not revealed by our con-
struction of the field.

The concept of field can now be put to a much more severe test.
We shall soon see whether it is anything more than a new represen-
tation of the acting forces. We could reason: assume, for a moment,
that the field characterizes all actions determined by its sources in a
unique way. This is only a guess. It would mean that if a solenoid and
a bar magnet have the same field, then all their influences must also
be the same. It would mean that two solenoids, carrying electric cur-
rents, behave like two bar magnets, that they attract or repel each other
depending, exactly as in the case of bars, on their relative positions. It
would also mean that a solenoid and a bar attract or repel each other
in the same way as two bars. Briefly speaking, it would mean that all
actions of a solenoid through which a current flows, and of a corre-
sponding bar magnet are the same, since the field alone is responsible
for them, and the field in both cases is of the same character. Exper-
iment fully confirms our guess!
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How difficult it would be to find those facts without the concept
of field! The expression for a force acting between a wire through
which a current flows and a magnetic pole is very complicated. In the
case of two solenoids we should have to investigate the forces with
which two currents act upon each other. But if we do this, with the
help of the field, we immediately notice the character of all those
actions at the moment when the similarity between the field of a sole-
noid and that of a bar magnet is seen.

We have the right to regard the field as something much more
than we did at first. The properties of the field alone appear to be essen-
tial for the description of phenomena; the differences in source do not
matter. The concept of field reveals its importance by leading to new
experimental facts.

The field proved a very helpful concept. It began as something
placed between the source and the magnetic needle in order to
describe the acting force. It was thought of as an “agent” of the cur-
rent, through which all action of the current was performed. But now
the agent also acts as an interpreter, one who translates the laws into
a simple, clear language, easily understood.

The first success of the field description suggests that it may be
convenient to consider all actions of currents, magnets and charges
indirectly, i.e., with the help of the field as an interpreter. A field may
be regarded as something always associated with a current. It is there
even in the absence of a magnetic pole to test its existence. Let us try
to follow this new clew consistently.

The field of a charged conductor can be introduced in much the
same way as the gravitational field, or the field of a current or mag-
net. Again only the simplest example! To design the field of a posi-
tively charged sphere, we must ask what kind of forces are acting on
a small positively charged test body brought near the source of the
field, the charged sphere. The fact that we use a positively and not a
negatively charged test body is merely a convention, indicating in
which direction the arrows on the line of force should be drawn. The
model is analogous to that of a gravitational field (figure 1) because of
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the similarity between Coulomb’s law and Newton’s. The only differ-
ence between the two models is that the arrows point in opposite
directions. Indeed, we have repulsion of two positive charges and
attraction of two masses. However, the field of a sphere with a nega-
tive charge will be identical with a gravitational field since the small
positive testing charge will be attracted by the source of the field.
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FIG. 7.

If both electric and magnetic poles are at rest, there is no action
between them, neither attraction nor repulsion. Expressing the same
fact in the field language we can say: an electrostatic field does not



influence a magnetostatic one and vice versa. The words “static field”
mean a field that does not change with time. The magnets and charges
would rest near one another for an eternity if no external forces dis-
turbed them. Electrostatic, magnetostatic and gravitational fields are
all of different character. They do not mix; each preserves its individ-
uality regardless of the others.

Let us return to the electric sphere which was, until now, at
rest, and assume that it begins to move due to the action of some
external force. The charged sphere moves. In the field language this
sentence reads: the field of the electric charge changes with time.
But the motion of this charged sphere is, as we already know from
Rowland’s experiment, equivalent to a current. Further, every cur-
rent is accompanied by a magnetic field. Thus the chain of our
argument is:

motion of charge → change of an electric field
↓

current → associated magnetic field.

We, therefore, conclude: The change of an electric field produced by the
motion of a charge is always accompanied by a magnetic field.

Our conclusion is based on Oersted’s experiment but it covers
much more. It contains the recognition that the association of an elec-
tric field, changing in time, with a magnetic field is essential for our
further argument.

As long as a charge is at rest there is only an electrostatic field.
But a magnetic field appears as soon as the charge begins to move.
We can say more. The magnetic field created by the motion of the
charge will be stronger if the charge is greater and if it moves faster.
This also is a consequence of Rowland’s experiment. Once again using
the field language, we can say: the faster the electric field changes, the
stronger the accompanying magnetic field.

We have tried here to translate familiar facts from the language of
fluids, constructed according to the old mechanical view, into the new
language of fields. We shall see later how clear, instructive, and far-
reaching our new language is.
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THE TWO PILLARS OF THE FIELD THEORY

“The change of an electric field is accompanied by a magnetic field.”
If we interchange the words “magnetic” and “electric,” our sentence
reads: “The change of a magnetic field is accompanied by an electric
field.” Only an experiment can decide whether or not this statement
is true. But the idea of formulating this problem is suggested by the
use of the field language.

Just over a hundred years ago, Faraday performed an experiment
which led to the great discovery of induced currents.

The demonstration is very simple. We need only a solenoid or some
other circuit, a bar magnet, and one of the many types of apparatus for
detecting the existence of an electric current. To begin with, a bar mag-
net is kept at rest near a solenoid which forms a closed circuit. No cur-
rent flows through the wire, for no source is present. There is only the
magnetostatic field of the bar magnet which does not change with time.
Now, we quickly change the position of the magnet either by removing
it or by bringing it nearer the solenoid, whichever we prefer. At this
moment, a current will appear for a very short time and then vanish.
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Whenever the position of the magnet is changed, the current reap-
pears, and can be detected by a sufficiently sensitive apparatus. But a
current—from the point of view of the field theory—means the exis-
tence of an electric field forcing the flow of the electric fluids through
the wire. The current, and therefore the electric field, too, vanishes
when the magnet is again at rest.

Imagine for a moment that the field language is unknown and
the results of this experiment have to be described, qualitatively and



quantitatively, in the language of old mechanical concepts. Our exper-
iment then shows: by the motion of a magnetic dipole a new force
was created, moving the electric fluid in the wire. The next question
would be: upon what does this force depend? This would be very dif-
ficult to answer. We should have to investigate the dependence of the
force upon the velocity of the magnet, upon its shape, and upon the
shape of the circuit. Furthermore, this experiment, if interpreted in
the old language, gives us no hint at all as to whether an induced cur-
rent can be excited by the motion of another circuit carrying a current,
instead of by motion of a bar magnet.

It is quite a different matter if we use the field language and again
trust our principle that the action is determined by the field. We see
at once that a solenoid through which a current flows would serve as
well as a bar magnet. The drawing shows two solenoids: one, small,
through which a current flows, and the other, in which the induced cur-
rent is detected, larger. We could move the small solenoid, as we previ-
ously moved the bar magnet, creating an induced current in the larger
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solenoid. Furthermore, instead of moving the small solenoid, we could
create and destroy a magnetic field by creating and destroying the cur-
rent, that is, by opening and closing the circuit. Once again, new facts
suggested by the field theory are confirmed by experiment!

Let us take a simpler example. We have a closed wire without any
source of current. Somewhere in the vicinity is a magnetic field. It
means nothing to us whether the source of this magnetic field is
another circuit through which an electric current flows, or a bar mag-
net. Figure 10 shows the closed circuit and the magnetic lines of force.



The qualitative and quantitative description of the induction phe-
nomena is very simple in terms of the field language. As marked on the
drawing, some lines of force go through the surface bounded by
the wire. We have to consider the lines of force cutting that part of
the plane which has the wire for a rim. No electric current is present
so long as the field does not change, no matter how great its strength.
But a current begins to flow through the rim-wire as soon as the num-
ber of lines passing through the surface surrounded by wire changes.
The current is determined by the change, however it may be caused,
of the number of lines passing the surface. This change in the num-
ber of lines of force is the only essential concept for both the quali-
tative and the quantitative descriptions of the induced current. “The
number of lines changes” means that the density of the lines changes
and this, we remember, means that the field strength changes.

These then are the essential points in our chain of reasoning:
change of magnetic field → induced current → motion of charge →
existence of an electric field.

Therefore: a changing magnetic field is accompanied by an electric field.
Thus we have found the two most important pillars of support

for the theory of the electric and magnetic field. The first is the con-
nection between the changing electric field and the magnetic field. It
arose from Oersted’s experiment on the deflection of a magnetic nee-
dle and led to the conclusion: a changing electric field is accompanied
by a magnetic field.
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The second connects the changing magnetic field with the induced
current and arose from Faraday’s experiment. Both formed a basis for
quantitative description.

Again the electric field accompanying the changing magnetic field
appears as something real. We had to imagine, previously, the mag-
netic field of a current existing without the testing pole. Similarly, we
must claim here that the electric field exists without the wire testing
the presence of an induced current.

In fact, our two-pillar structure could be reduced to only one,
namely, to that based on Oersted’s experiment. The result of Faraday’s
experiment could be deduced from this with the law of conservation
of energy. We used the two-pillar structure only for the sake of clear-
ness and economy.

One more consequence of the field description should be men-
tioned. There is a circuit through which a current flows, with for
instance, a voltaic battery as the source of the current. The connection
between the wire and the source of the current is suddenly broken.
There is, of course, no current now! But during this short inter-
ruption an intricate process takes place, a process which could again
have been foreseen by the field theory. Before the interruption of the
current there was a magnetic field surrounding the wire. This ceased
to exist the moment the current was interrupted. Therefore, through
the interruption of a current, a magnetic field disappeared. The
number of lines of force passing through the surface surrounded by
the wire changed very rapidly. But such a rapid change, however it
is produced, must create an induced current. What really matters is
the change of the magnetic field making the induced current
stronger if the change is greater. This consequence is another test for
the theory. The disconnection of a current must be accompanied by
the appearance of a strong, momentary induced current. Experiment
again confirms the prediction. Anyone who has ever disconnected a
current must have noticed that a spark appears. This spark reveals
the strong potential differences caused by the rapid change of the
magnetic field.
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The same process can be looked at from a different point of view,
that of energy. A magnetic field disappeared and a spark was created.
A spark represents energy, therefore, so also must the magnetic field.
To use the field concept and its language consistently, we must regard
the magnetic field as a store of energy. Only in this way shall we be
able to describe the electric and magnetic phenomena in accordance
with the law of conservation of energy.

Starting as a helpful model the field became more and more real.
It helped us to understand old facts and led us to new ones. The attri-
bution of energy to the field is one step further in the development
in which the field concept was stressed more and more, and the con-
cepts of substances, so essential to the mechanical point of view, were
more and more suppressed.
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QUANTA
Continuity—discontinuity . . . Elementary quanta of matter and electricity . . .
The quanta of light . . . Light spectra . . . The waves of matter . . .
Probability waves . . . Physics and reality

CONTINUITY—DISCONTINUITY

A MAP of New York City and the surrounding country is spread before
us. We ask: which points on this map can be reached by train? After
looking up these points in a railway timetable, we mark them on the
map. We now change our question and ask: which points can be reached
by car? If we draw lines on the map representing all the roads starting
from New York, every point on these roads can, in fact, be reached by
car. In both cases we have sets of points. In the first they are separated
from each other and represent the different railway stations, and in the
second they are the points along the lines representing the roads. Our
next question is about the distance of each of these points from New
York, or, to be more rigorous, from a certain spot in that city. In the
first case, certain numbers correspond to the points on our map. These
numbers change by irregular, but always finite, leaps and bounds. We
say: the distances from New York of the places which can be reached
by train change only in a discontinuous way. Those of the places which
can be reached by car, however, may change by steps as small as we
wish, they can vary in a continuous way. The changes in distance can be
made arbitrarily small in the case of a car, but not in the case of a train.

The output of a coal mine can change in a continuous way. The
amount of coal produced can be decreased or increased by arbitrarily
small steps. But the number of miners employed can change only dis-
continuously. It would be pure nonsense to say: “Since yesterday, the
number of employees has increased by 3.783.”

Asked about the amount of money in his pocket, a man can give
a number containing only two decimals. A sum of money can change
only by jumps, in a discontinuous way. In America the smallest

300

SELECTIONS FROM THE EVOLUTION OF PHYSICS



permissible change or, as we shall call it, the “elementary quantum”
for American money, is one cent. The elementary quantum for Eng-
lish money is one farthing, worth only half the American elementary
quantum. Here we have an example of two elementary quanta whose
mutual values can be compared. The ratio of their values has a defi-
nite sense since one of them is worth twice as much as the other.

We can say: some quantities can change continuously and others
can change only discontinuously, by steps which cannot be further
decreased. These indivisible steps are called the elementary quanta of
the particular quantity to which they refer.

We can weigh large quantities of sand and regard its mass as con-
tinuous even though its granular structure is evident. But if the sand
were to become very precious and the scales used very sensitive, we
should have to consider the fact that the mass always changes by a
multiple number of one grain. The mass of this one grain would be
our elementary quantum. From this example we see how the discon-
tinuous character of a quantity, so far regarded as continuous, can be
detected by increasing the precision of our measurements.

If we had to characterize the principal idea of the quantum theory
in one sentence, we could say: it must be assumed that some physical
quantities so far regarded as continuous are composed of elementary quanta.

The region of facts covered by the quantum theory is tremendously
great. These facts have been disclosed by the highly developed tech-
nique of modern experiment. As we can neither show nor describe even
the basic experiments, we shall frequently have to quote their results
dogmatically. Our aim is to explain the principal underlying ideas only.

ELEMENTARY QUANTA OF MATTER 
AND ELECTRICITY

In the picture of matter drawn by the kinetic theory, all elements are
built of molecules. Take the simplest case of the lightest element, that
is hydrogen. . . . Its value is:

0.000 000 000 000 000 000 000 0033 grams.
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This means that mass is discontinuous. The mass of a portion of
hydrogen can change only by a whole number of small steps each
corresponding to the mass of one hydrogen molecule. But chemical
processes show that the hydrogen molecule can be broken up into
two parts, or, in other words, that the hydrogen molecule is com-
posed of two atoms. In chemical processes it is the atom and not the
molecule which plays the role of an elementary quantum. Dividing
the above number by two, we find the mass of a hydrogen atom. This
is about

0.000 000 000 000 000 000 000 0017 grams.

Mass is a discontinuous quantity. But, of course, we need not
bother about this when determining weight. Even the most sensitive
scales are far from attaining the degree of precision by which the dis-
continuity in mass variation could be detected.

Let us return to a well-known fact. A wire is connected with the
source of a current. The current is flowing through the wire from
higher to lower potential. We remember that many experimental facts
were explained by the simple theory of electric fluids flowing through
the wire. We also remember that the decision as to whether the pos-
itive fluid flows from higher to lower potential, or the negative fluid
flows from lower to higher potential, was merely a matter of con-
vention. For the moment we disregard all the further progress result-
ing from the field concepts. Even when thinking in the simple terms
of electric fluids, there still remain some questions to be settled. As
the name “fluid” suggests, electricity was regarded, in the early days,
as a continuous quantity. The amount of charge could be changed,
according to these old views, by arbitrarily small steps. There was no
need to assume elementary electric quanta. The achievements of the
kinetic theory of matter prepared us for a new question: do elemen-
tary quanta of electric fluids exist? The other question to be settled
is: does the current consist of a flow of positive, negative or perhaps
of both fluids?
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The idea of all the experiments answering these questions is to tear
the electric fluid from the wire, to let it travel through empty space, to
deprive it of any association with matter and then to investigate its
properties, which must appear most clearly under these conditions.
Many experiments of this kind were performed in the late nineteenth
century. Before explaining the idea of these experimental arrangements,
at least in one case, we shall quote the results. The electric fluid flow-
ing through the wire is a negative one, directed, therefore, from lower
to higher potential. Had we known this from the start, when the the-
ory of electric fluids was first formed, we should certainly have inter-
changed the words, and called the electricity of the rubber rod posi-
tive, that of the glass rod negative. It would then have been more
convenient to regard the flowing fluid as the positive one. Since our
first guess was wrong we now have to put up with the inconvenience.
The next important question is whether the structure of this negative
fluid is “granular,” whether or not it is composed of electric quanta.
Again a number of independent experiments show that there is no
doubt as to the existence of an elementary quantum of this negative
electricity. The negative electric fluid is constructed of grains, just as the
beach is composed of grains of sand, or a house built of bricks. This result
was formulated most clearly by J. J. Thomson, about forty years ago. The
elementary quanta of negative electricity are called electrons. Thus every
negative electric charge is composed of a multitude of elementary
charges represented by electrons. The negative charge can, like mass,
vary only discontinuously. The elementary electric charge is, however,
so small that in many investigations it is equally possible and some-
times even more convenient to regard it as a continuous quantity. Thus
the atomic and electron theories introduce into science discontinuous
physical quantities which can vary only by jumps.

Imagine two parallel metal plates in some place from which all air
has been extracted. One of the plates has a positive, the other a neg-
ative charge. A positive test charge brought between the two plates will
be repelled by the positively charged and attracted by the negatively
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charged plate. Thus the lines of force of the electric field will
be directed from the positively to the negatively charged plate. A force
acting on a negatively charged test body would have the opposite
direction. If the plates are sufficiently large, the lines of force between
them will be equally dense everywhere; it is immaterial where the test
body is placed, the force and, therefore, the density of the lines of force
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will be the same. Electrons brought somewhere between the plates
would behave like raindrops in the gravitational field of the earth, mov-
ing parallel to each other from the negatively to the positively charged
plate. There are many known experimental arrangements for bringing
a shower of electrons into such a field which directs them all in the
same way. One of the simplest is to bring a heated wire between the
charged plates. Such a heated wire emits electrons which are afterwards
directed by the lines of force of the external field. For instance, radio
tubes, familiar to everyone, are based on this principle.

Many very ingenious experiments have been performed on a beam
of electrons. The changes of their path in different electric and mag-
netic external fields have been investigated. It has even been possible
to isolate a single electron and to determine its elementary charge and
its mass, that is, its inertial resistance to the action of an external force.
Here we shall only quote the value of the mass of an electron. It turned
out to be about two thousand times smaller than the mass of a hydro-
gen atom. Thus the mass of a hydrogen atom, small as it is, appears



great in comparison with the mass of an electron. From the point of
view of a consistent field theory, the whole mass, that is, the whole
energy, of an electron is the energy of its field; the bulk of its strength
is within a very small sphere, and away from the “center” of the elec-
tron it is weak.

We said before that the atom of any element is its smallest ele-
mentary quantum. This statement was believed for a very long time.
Now, however, it is no longer believed! Science has formed a new view
showing the limitations of the old one. There is scarcely any statement
in physics more firmly founded on facts than the one about the com-
plex structure of the atom. First came the realization that the electron,
the elementary quantum of the negative electric fluid, is also one of
the components of the atom, one of the elementary bricks from which
all matter is built. The previously quoted example of a heated wire
emitting electrons is only one of the numerous instances of the extrac-
tion of these particles from matter. This result closely connecting the
problem of the structure of matter with that of electricity follows,
beyond any doubt, from very many independent experimental facts.

It is comparatively easy to extract from an atom some of the elec-
trons from which it is composed. This can be done by heat, as in our
example of a heated wire, or in a different way, such as by bombard-
ing atoms with other electrons.

Suppose a thin, red-hot, metal wire is inserted into rarefied hydro-
gen. The wire will emit electrons in all directions. Under the action
of a foreign electric field a given velocity will be imparted to them.
An electron increases its velocity just as a stone falling in the gravita-
tional field. By this method we can obtain a beam of electrons rush-
ing along with a definite speed in a definite direction. Nowadays, we
can reach velocities comparable to that of light by submitting elec-
trons to the action of very strong fields. What happens, then, when a
beam of electrons of a definite velocity impinges on the molecules of
rarefied hydrogen? The impact of a sufficiently speedy electron will
not only disrupt the hydrogen molecule into its two atoms but will
also extract an electron from one of the atoms.
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Let us accept the fact that electrons are constituents of matter.
Then, an atom from which an electron has been torn out cannot be
electrically neutral. If it was previously neutral, then it cannot be so
now, since it is poorer by one elementary charge. That which remains
must have a positive charge. Furthermore, since the mass of an elec-
tron is so much smaller than that of the lightest atom, we can safely
conclude that by far the greater part of the mass of the atom is not
represented by electrons but by the remainder of the elementary par-
ticles which are much heavier than the electrons. We call this heavy
part of the atom its nucleus.

Modern experimental physics has developed methods of breaking
up the nucleus of the atom, of changing atoms of one element into
those of another, and of extracting from the nucleus the heavy ele-
mentary particles of which it is built. This chapter of physics, known
as “nuclear physics,” to which Rutherford contributed so much, is,
from the experimental point of view, the most interesting. But a the-
ory, simple in its fundamental ideas and connecting the rich variety
of facts in the domain of nuclear physics, is still lacking. Since, in
these pages, we are interested only in general physical ideas, we shall
omit this chapter in spite of its great importance in modern physics.

THE QUANTA OF LIGHT

Let us consider a wall built along the seashore. The waves from the
sea continually impinge on the wall, wash away some of its surface,
and retreat, leaving the way clear for the incoming waves. The mass
of the wall decreases and we can ask how much is washed away in,
say, one year. But now let us picture a different process. We want to
diminish the mass of the wall by the same amount as previously but
in a different way. We shoot at the wall and split it at the places where
the bullets hit. The mass of the wall will be decreased and we can well
imagine that the same reduction in mass is achieved in both cases. But
from the appearance of the wall we could easily detect whether the
continuous sea wave or the discontinuous shower of bullets has been
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acting. It will be helpful in understanding the phenomena which we
are about to describe, to bear in mind the difference between sea waves
and a shower of bullets.

We said, previously, that a heated wire emits electrons. Here we
shall introduce another way of extracting electrons from metal. Homo-
geneous light, such as violet light, which is, as we know, light of a
definite wave-length, is impinging on a metal surface. The light
extracts electrons from the metal. The electrons are torn from the
metal and a shower of them speeds along with a certain velocity. From
the point of view of the energy principle we can say: the energy of
light is partially transformed into the kinetic energy of expelled elec-
trons. Modern experimental technique enables us to register these elec-
tron-bullets, to determine their velocity and thus their energy. This
extraction of electrons by light falling upon metal is called the photo-
electric effect.

Our starting point was the action of a homogeneous light wave,
with some definite intensity. As in every experiment, we must now
change our arrangements to see whether this will have any influence
on the observed effect.

Let us begin by changing the intensity of the homogeneous vio-
let light falling on the metal plate and note to what extent the energy
of the emitted electrons depends upon the intensity of the light. Let
us try to find the answer by reasoning instead of by experiment. We
could argue: in the photoelectric effect a certain definite portion of
the energy of radiation is transformed into energy of motion of the
electrons. If we again illuminate the metal with light of the same wave-
length but from a more powerful source, then the energy of the emit-
ted electrons should be greater, since the radiation is richer in energy.
We should, therefore, expect the velocity of the emitted electrons to
increase if the intensity of the light increases. But experiment again
contradicts our prediction. Once more we see that the laws of nature
are not as we should like them to be. We have come upon one of the
experiments which, contradicting our predictions, breaks the theory
on which they were based. The actual experimental result is, from the
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point of view of the wave theory, astonishing. The observed electrons
all have the same speed, the same energy, which does not change when
the intensity of the light is increased.

This experimental result could not be predicted by the wave the-
ory. Here again a new theory arises from the conflict between the old
theory and experiment.

Let us be deliberately unjust to the wave theory of light, forget-
ting its great achievements, its splendid explanation of the bending of
light around very small obstacles. With our attention focused on the
photoelectric effect, let us demand from the theory an adequate expla-
nation of this effect. Obviously, we cannot deduce from the wave the-
ory the independence of the energy of electrons from the intensity of
light by which they have been extracted from the metal plate. We shall,
therefore, try another theory. We remember that Newton’s corpuscu-
lar theory, explaining many of the observed phenomena of light, failed
to account for the bending of light, which we are now deliberately
disregarding. In Newton’s time the concept of energy did not exist.
Light corpuscles were, according to him, weightless; each color pre-
served its own substance character. Later, when the concept of energy
was created and it was recognized that light carries energy, no one
thought of applying these concepts to the corpuscular theory of light.
Newton’s theory was dead and, until our own century, its revival was
not taken seriously.

To keep the principal idea of Newton’s theory, we must assume
that homogeneous light is composed of energy-grains and replace the
old light corpuscles by light quanta, which we shall call photons, small
portions of energy, traveling through empty space with the velocity of
light. The revival of Newton’s theory in this new form leads to the
quantum theory of light. Not only matter and electric charge, but also
energy of radiation has a granular structure, i.e., is built up of light
quanta. In addition to quanta of matter and quanta of electricity there
are also quanta of energy.

The idea of energy quanta was first introduced by Planck at the
beginning of this century in order to explain some effects much more
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complicated than the photoelectric effect. But the photo-effect shows
most clearly and simply the necessity for changing our old concepts.

It is at once evident that this quantum theory of light explains the
photoelectric effect. A shower of photons is falling on a metal plate.
The action between radiation and matter consists here of very many
single processes in which a photon impinges on the atom and tears
out an electron. These single processes are all alike and the extracted
electron will have the same energy in every case. We also understand
that increasing the intensity of the light means, in our new language,
increasing the number of falling photons. In this case, a different num-
ber of electrons would be thrown out of the metal plate, but the
energy of any single one would not change. Thus we see that this the-
ory is in perfect agreement with observation.

What will happen if a beam of homogeneous light of a different
color, say, red instead of violet, falls on the metal surface? Let us leave
experiment to answer this question. The energy of the extracted elec-
trons must be measured and compared with the energy of electrons
thrown out by violet light. The energy of the electron extracted by red
light turns out to be smaller than the energy of the electron extracted
by violet light. This means that the energy of the light quanta is dif-
ferent for different colors. The photons belonging to the color red have
half the energy of those belonging to the color violet. Or, more rig-
orously: the energy of a light quantum belonging to a homogeneous
color decreases proportionally as the wave-length increases. There is an
essential difference between quanta of energy and quanta of electricity.
Light quanta differ for every wave-length, whereas quanta of electricity
are always the same. If we were to use one of our previous analogies,
we should compare light quanta to the smallest monetary quanta, dif-
fering in each country.

Let us continue to discard the wave theory of light and assume that
the structure of light is granular and is formed by light quanta, that is,
photons speeding through space with the velocity of light. Thus, in
our new picture, light is a shower of photons, and the photon is the
elementary quantum of light energy. If, however, the wave theory is
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discarded, the concept of a wave-length disappears. What new concept
takes its place? The energy of the light quanta! Statements expressed in
the terminology of the wave theory can be translated into statements
of the quantum theory of radiation. For example:
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TERMINOLOGY OF THE

WAVE THEORY

Homogeneous light has a definite
wave-length. The wave-length of
the red end of the spectrum is
twice that of the violet end.

TERMINOLOGY OF THE

QUANTUM THEORY

Homogeneous light contains pho-
tons of a definite energy. The
energy of the photon for the red
end of the spectrum is half that of
the violet end.

The state of affairs can be summarized in the following way: there
are phenomena which can be explained by the quantum theory but
not by the wave theory. Photo-effect furnishes an example, though
other phenomena of this kind are known. There are phenomena which
can be explained by the wave theory but not by the quantum theory.
The bending of light around obstacles is a typical example. Finally,
there are phenomena, such as the rectilinear propagation of light,
which can be equally well explained by the quantum and the wave
theory of light.

But what is light really? Is it a wave or a shower of photons? Once
before we put a similar question when we asked: is light a wave or a
shower of light corpuscles? At that time there was every reason for dis-
carding the corpuscular theory of light and accepting the wave theory,
which covered all phenomena. Now, however, the problem is much
more complicated. There seems no likelihood of forming a consistent
description of the phenomena of light by a choice of only one of the
two possible languages. It seems as though we must use sometimes the
one theory and sometimes the other, while at times we may use either.
We are faced with a new kind of difficulty. We have two contradic-
tory pictures of reality; separately neither of them fully explains the
phenomena of light, but together they do!



How is it possible to combine these two pictures? How can we
understand these two utterly different aspects of light? It is not easy
to account for this new difficulty. Again we are faced with a funda-
mental problem.

For the moment let us accept the photon theory of light and try,
by its help, to understand the facts so far explained by the wave the-
ory. In this way we shall stress the difficulties which make the two
theories appear, at first sight, irreconcilable.

We remember: a beam of homogeneous light passing through a
pinhole gives light and dark rings. How is it possible to understand
this phenomena by the help of the quantum theory of light, disre-
garding the wave theory? A photon passes through the hole. We could
expect the screen to appear light if the photon passes through and dark
if it does not. Instead, we find fight and dark rings. We could try to
account for it as follows: perhaps there is some interaction between the
rim of the hole and the photon which is responsible for the appear-
ance of the diffraction rings. This sentence can, of course, hardly be
regarded as an explanation. At best, it outlines a program for an expla-
nation holding out at least some hope of a future understanding of dif-
fraction by interaction between matter and photons.

But even this feeble hope is dashed by our previous discussion of
another experimental arrangement. Let us take two pinholes. Homo-
geneous light passing through the two holes gives light and dark stripes
on the screen. How is this effect to be understood from the point of
view of the quantum theory of light? We could argue: a photon passes
through either one of the two pinholes. If a photon of homogeneous
light represents an elementary light particle, we can hardly imagine its
division and its passage through the two holes. But then the effect
should be exactly as in the first case, light and dark rings and not light
and dark stripes. How is it possible then that the presence of another
pinhole completely changes the effect? Apparently the hole through
which the photon does not pass, even though it may be at a fair dis-
tance, changes the rings into stripes! If the photon behaves like a cor-
puscle in classical physics it must pass through one of the two holes.
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But in this case, the phenomena of diffraction seem quite incompre-
hensible.

Science forces us to create new ideas, new theories. Their aim is
to break down the wall of contradictions which frequently blocks the
way of scientific progress. All the essential ideas in science were born
in a dramatic conflict between reality and our attempts at under-
standing. Here again is a problem for the solution of which new prin-
ciples are needed. Before we try to account for the attempts of modern
physics to explain the contradiction between the quantum and the
wave aspects of light, we shall show that exactly the same difficulty
appears when dealing with quanta of matter instead of quanta of light.

LIGHT SPECTRA

We already know that all matter is built of only a few kinds of parti-
cles. Electrons were the first elementary particles of matter to be
discovered. But electrons are also the elementary quanta of negative
electricity. We learned furthermore that some phenomena force us to
assume that light is composed of elementary light quanta, differing for
different wave-lengths. Before proceeding we must discuss some phys-
ical phenomena in which matter as well as radiation plays an essen-
tial role.

The sun emits radiation which can be split into its components
by a prism. The continuous spectrum of the sun can thus be obtained.
Every wave-length between the two ends of the visible spectrum is rep-
resented. Let us take another example. It was previously mentioned
that sodium when incandescent emits homogeneous light, light of one
color or one wave-length. If incandescent sodium is placed before the
prism we see only one yellow line. In general, if a radiating body is
placed before the prism, then the light it emits is split up into its com-
ponents, revealing the spectrum characteristic of the emitting body.

The discharge of electricity in a tube containing gas produces a
source of light such as seen in the neon tubes used for luminous adver-
tisements. Suppose such a tube is placed before a spectroscope. The
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spectroscope is an instrument which acts like a prism, but with much
greater accuracy and sensitiveness; it splits light into its components,
that is, it analyzes it. Light from the sun, seen through a spectroscope,
gives a continuous spectrum; all wave-lengths are represented in it. If,
however, the source of light is a gas through which a current of elec-
tricity passes, the spectrum is of a different character. Instead of the
continuous, multi-colored design of the sun’s spectrum, bright, sepa-
rated stripes appear on a continuous dark background. Every stripe, if
it is very narrow, corresponds to a definite color or, in the language
of the wave theory, to a definite wave-length. For example, if twenty
lines are visible in the spectrum, each of them will be designated by
one of twenty numbers expressing the corresponding wave-length. The
vapors of the various elements possess different systems of lines, and
thus different combinations of numbers designating the wave-lengths
composing the emitted light spectrum. No two elements have identi-
cal systems of stripes in their characteristic spectra, just as no two per-
sons have exactly identical fingerprints. As a catalogue of these lines
was worked out by physicists, the existence of laws gradually became
evident, and it was possible to replace some of the columns of seem-
ingly disconnected numbers expressing the length of the various waves
by one simple mathematical formula.

All that has just been said can now be translated into the photon
language. The stripes correspond to certain definite wave-lengths or,
in other words, to photons with a definite energy. Luminous gases do
not, therefore, emit photons with all possible energies, but only those
characteristic of the substance. Reality again limits the wealth of
possibilities.

Atoms of a particular element, say, hydrogen, can emit only pho-
tons with definite energies. Only the emission of definite energy
quanta is permissible, all others being prohibited. Imagine, for the sake
of simplicity, that some element emits only one line, that is, photons
of a quite definite energy. The atom is richer in energy before the emis-
sion and poorer afterwards. From the energy principle it must follow
that the energy level of an atom is higher before emission and lower
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afterwards, and that the difference between the two levels must be
equal to the energy of the emitted photon. Thus the fact that an atom
of a certain element emits radiation of one wave-length only, that is
photons of a definite energy only, could be expressed differently: only
two energy levels are permissible in an atom of this element and the
emission of a photon corresponds to the transition of the atom from
the higher to the lower energy level.

But more than one line appears in the spectra of the elements, as a
rule. The photons emitted correspond to many energies and not to one
only. Or, in other words, we must assume that many energy levels are
allowed in an atom and that the emission of a photon corresponds to
the transition of the atom from a higher energy level to a lower one. But
it is essential that not every energy level should be permitted, since not
every wave-length, not every photon-energy, appears in the spectra of an
element. Instead of saying that some definite lines, some definite wave-
lengths, belong to the spectrum of every atom, we can say that every
atom has some definite energy levels, and that the emission of light
quanta is associated with the transition of the atom from one energy level
to another. The energy levels are, as a rule, not continuous but discon-
tinuous. Again we see that the possibilities are restricted by reality.

It was Bohr who showed for the first time why just these and no
other lines appear in the spectra. His theory, formulated twenty-five
years ago, draws a picture of the atom from which, at any rate in sim-
ple cases, the spectra of the elements can be calculated and the appar-
ently dull and unrelated numbers are suddenly made coherent in the
light of the theory.

Bohr’s theory forms an intermediate step toward a deeper and
more general theory, called the wave or quantum mechanics. It is our
aim in these last pages to characterize the principal ideas of this the-
ory. Before doing so, we must mention one more theoretical and
experimental result of a more special character.

Our visible spectrum begins with a certain wave-length for the vio-
let color and ends with a certain wave-length for the red color. Or, in
other words, the energies of the photons in the visible spectrum are
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always enclosed within the limits formed by the photon energies of
the violet and red lights. This limitation is, of course, only a property
of the human eye. If the difference in energy of some of the energy
levels is sufficiently great, then an ultraviolet photon will be sent out,
giving a line beyond the visible spectrum. Its presence cannot be
detected by the naked eye; a photographic plate must be used.

X rays are also composed of photons of a much greater energy than
those of visible light, or in other words, their wave-lengths are much
smaller, thousands of times smaller in fact, than those of visible light.

But is it possible to determine such small wavelengths experimen-
tally? It was difficult enough to do so for ordinary light. We had to have
small obstacles or small apertures. Two pinholes very near to each other,
showing diffraction for ordinary light, would have to be many thou-
sands of times smaller and closer together to show diffraction for X rays.

How then can we measure the wave-lengths of these rays? Nature
herself comes to our aid.

A crystal is a conglomeration of atoms arranged at very short dis-
tances from each other on a perfectly regular plan. Our drawing shows
a simple model of the structure of a crystal. Instead of minute aper-
tures, there are extremely small obstacles formed by the atoms of the
element, arranged very close to each other in absolutely regular order.
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The distances between the atoms, as found from the theory of the
crystal structure, are so small that they might be expected to show the
effect of diffraction for X rays. Experiment proved that it is, in fact,
possible to diffract the X-ray wave by means of these closely packed
obstacles disposed in the regular three-dimensional arrangement occur-
ring in a crystal.

Suppose that a beam of X rays falls upon a crystal and, after pass-
ing through it, is recorded on a photographic plate. The plate then
shows the diffraction pattern. Various methods have been used to
study the X-ray spectra, to deduce data concerning the wave-length
from the diffraction pattern. What has been said here in a few words
would fill volumes if all theoretical and experimental details were set
forth. In Plate III (page 317) we give only one diffraction pattern
obtained by one of the various methods. We again see the dark and
light rings so characteristic of the wave theory. In the center the non-
diffracted ray is visible. If the crystal were not brought between the X
rays and the photographic plate, only the light spot in the center would
be seen. From photographs of this kind the wave-lengths of the X-ray
spectra can be calculated and, on the other hand, if the wave-length is
known, conclusions can be drawn about the structure of the crystal.

THE WAVES OF MATTER

How can we understand the fact that only certain characteristic wave-
lengths appear in the spectra of the elements?

It has often happened in physics that an essential advance was
achieved by carrying out a consistent analogy between apparently
unrelated phenomena. In these pages we have often seen how ideas
created and developed in one branch of science were afterwards suc-
cessfully applied to another. The development of the mechanical and
field views gives many examples of this kind. The association of solved
problems with those unsolved may throw new light on our difficulties
by suggesting new ideas. It is easy to find a superficial analogy which
really expresses nothing. But to discover some essential common features,
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hidden beneath a surface of external differences, to form, on this basis,
a new successful theory, is important creative work. The development
of the so-called wave mechanics, begun by de Broglie and Schrödinger,
less than fifteen years ago, is a typical example of the achievement of
a successful theory by means of a deep and fortunate analogy.
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Our starting point is a classical example having nothing to do with
modern physics. We take in our hand the end of a very long flexible
rubber tube, or a very long spring, and try to move it rhythmically
up and down, so that the end oscillates. Then, as we have seen in
many other examples, a wave is created by the oscillation which
spreads through the tube with a certain velocity. If we imagine an infi-

nitely long tube, then the portions of waves, once started, will pursue
their endless journey without interference.

Now another case. The two ends of the same tube are fastened. If
preferred, a violin string may be used. What happens now if a wave
is created at one end of the rubber tube or cord? The wave begins its
journey as in the previous example, but it is soon reflected by the other
end of the tube. We now have two waves: one created by oscillation,
the other by reflection; they travel in opposite directions and interfere
with each other. It would not be difficult to trace the interference of
the two waves and discover the one wave resulting from their super-
position; it is called the standing wave. The two words “standing” and
“wave” seem to contradict each other; their combination is, neverthe-
less, justified by the result of the superposition of the two waves.

The simplest example of a standing wave is the motion of a cord with
the two ends fixed, an up-and-down motion, as shown in our drawing
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great as the one with two nodes. Similarly, standing waves can have
four, five, and more nodes. The wave-length in each case will depend
on the number of nodes. This number can only be an integer and can

(figure 15). This motion is the result of one wave lying on the other when
the two are traveling in opposite directions. The characteristic feature of
this motion is: only the two end points are at rest. They are called nodes.
The wave stands, so to speak, between the two nodes, all points of the
cord reaching simultaneously the maxima and minima of their deviation.

But this is only the simplest kind of a standing wave. There are
others. For example, a standing wave can have three nodes, one at each
end and one in the center. In this case three points are always at rest.
A glance at figures 16 and 17 shows that here the wave-length is half as
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FIG. 17.

change only by jumps. The sentence, “the number of nodes in a stand-
ing wave is 3.576,” is pure nonsense. Thus the wave-length can only
change discontinuously. Here, in this most classical problem, we rec-
ognize the familiar features of the quantum theory. The standing wave
produced by a violin player is, in fact, still more complicated, being
a mixture of very many waves with two, three, four, five, and more
nodes and, therefore, a mixture of several wave-lengths. Physics can
analyze such a mixture into the simple standing waves from which it
is composed. Or, using our previous terminology, we could say that
the oscillating string has its spectrum, just as an element emitting radi-
ation. And, in the same way as for the spectrum of an element, only
certain wave-lengths are allowed, all others being prohibited.



We have thus discovered some similarity between the oscillating
cord and the atom emitting radiation. Strange as this analogy may
seem, let us draw further conclusions from it and try to proceed with
the comparison, once having chosen it. The atoms of every element are
composed of elementary particles, the heavier constituting the nucleus,
and the lighter the electrons. Such a system of particles behaves like a
small acoustical instrument in which standing waves are produced.

Yet the standing wave is the result of interference between two or,
generally, even more moving waves. If there is some truth in our anal-
ogy, a still simpler arrangement than that of the atom should corre-
spond to a spreading wave. What is the simplest arrangement? In our
material world, nothing can be simpler than an electron, an elemen-
tary particle, on which no forces are acting, that is, an electron at rest
or in uniform motion. We could guess a further link in the chain of
our analogy: electron moving uniformly → waves of a definite length.
This was de Broglie’s new and courageous idea.

It was previously shown that there are phenomena in which light
reveals its wave-like character and others in which light reveals its cor-
puscular character. After becoming used to the idea that light is a
wave, we found, to our astonishment, that in some cases, for instance
in the photoelectric effect, it behaves like a shower of photons. Now
we have just the opposite state of affairs for electrons. We accustomed
ourselves to the idea that electrons are particles, elementary quanta of
electricity and matter. Their charge and mass were investigated. If
there is any truth in de Broglie’s idea, then there must be some phe-
nomena in which matter reveals its wave-like character. At first, this
conclusion, reached by following the acoustical analogy, seems strange
and incomprehensible. How can a moving corpuscle have anything to
do with a wave? But this is not the first time we have faced a diffi-
culty of this kind in physics. We met the same problem in the domain
of light phenomena.

Fundamental ideas play the most essential role in forming a phys-
ical theory. Books on physics are full of complicated mathematical for-
mulae. But thought and ideas, not formulae, are the beginning of
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every physical theory. The ideas must later take the mathematical form
of a quantitative theory, to make possible the comparison with exper-
iment. This can be explained by the example of the problem with
which we are now dealing. The principal guess is that the uniformly
moving electron will behave, in some phenomena, like a wave. Assume
that an electron or a shower of electrons, provided they all have the
same velocity, is moving uniformly. The mass, charge, and velocity of
each individual electron is known. If we wish to associate in some way
a wave concept with a uniformly moving electron or electrons, our
next question must be: what is the wave-length? This is a quantitative
question and a more or less quantitative theory must be built up to
answer it. This is indeed a simple matter. The mathematical simplic-
ity of de Broglie’s work, providing an answer to this question, is most
astonishing. At the time his work was done, the mathematical tech-
nique of other physical theories was very subtle and complicated, com-
paratively speaking. The mathematics dealing with the problem of
waves of matter is extremely simple and elementary but the funda-
mental ideas are deep and far-reaching.

Previously, in the case of light waves and photons, it was shown
that every statement formulated in the wave language can be trans-
lated into the language of photons or light corpuscles. The same is
true for electronic waves. For uniformly moving electrons, the cor-
puscular language is already known. But every statement expressed in
the corpuscular language can be translated into the wave language, just
as in the case of photons. Two clews laid down the rules of transla-
tion. The analogy between light waves and electronic waves or pho-
tons and electrons is one clew. We try to use the same method of
translation for matter as for light. The special relativity theory fur-
nished the other clew. The laws of nature must be invariant with
respect to the Lorentz and not to the classical transformation. These
two clews together determine the wave-length corresponding to a
moving electron. It follows from the theory that an electron moving
with a velocity of, say, 10,000 miles per second, has a wave-length
which can be easily calculated, and which turns out to lie in the same
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region as the X-ray wave-lengths. Thus we conclude further that if the
wave character of matter can be detected, it should be done experi-
mentally in an analogous way to that of X rays.

Imagine an electron beam moving uniformly with a given veloc-
ity, or, to use the wave terminology, a homogeneous electronic wave,
and assume that it falls on a very thin crystal, playing the part of a
diffraction grating. The distances between the diffracting obstacles in
the crystal are so small that diffraction for X rays can be produced.
One might expect a similar effect for electronic waves with the same
order of wave-length. A photographic plate would register this dif-
fraction of electronic waves passing through the thin layer of crystal.
Indeed, the experiment produces what is undoubtedly one of the great
achievements of the theory: the phenomenon of diffraction for elec-
tronic waves. The similarity between the diffraction of an electronic
wave and that of an X ray is particularly marked as seen from a com-
parison of the patterns in Plate III. We know that such pictures enable
us to determine the wave-lengths of X rays. The same holds good for
electronic waves. The diffraction pattern gives the length of a wave of
matter and the perfect quantitative agreement between theory and
experiment confirms the chain of our argument splendidly.

Our previous difficulties are broadened and deepened by this
result. This can be made clear by an example similar to the one given
for a light wave. An electron shot at a very small hole will bend like
a light wave. Light and dark rings appear on the photographic plate.
There may be some hope of explaining this phenomenon by the inter-
action between the electron and the rim, though such an explanation
does not seem to be very promising. But what about the two pinholes?
Stripes appear instead of rings. How is it possible that the presence of
the other hole completely changes the effect? The electron is indivis-
ible and can, it would seem, pass through only one of the two holes.
How could an electron passing through a hole possibly know that
another hole has been made some distance away?

We asked before: what is light? Is it a shower of corpuscles or a
wave? We now ask: what is matter, what is an electron? Is it a particle

322

SELECTIONS FROM THE EVOLUTION OF PHYSICS



or a wave? The electron behaves like a particle when moving in an exter-
nal electric or magnetic field. It behaves like a wave when diffracted by
a crystal. With the elementary quanta of matter we came across the same
difficulty that we met with in the light quanta. One of the most fun-
damental questions raised by recent advance in science is how to rec-
oncile the two contradictory views of matter and wave. It is one of those
fundamental difficulties which, once formulated, must lead, in the long
run, to scientific progress. Physics has tried to solve this problem. The
future must decide whether the solution suggested by modern physics
is enduring or temporary.

PROBABILITY WAVES

If, according to classical mechanics, we know the position and veloc-
ity of a given material point and also what external forces are acting,
we can predict, from the mechanical laws, the whole of its future path.
The sentence: “The material point has such-and-such position and
velocity at such-and-such an instant,” has a definite meaning in clas-
sical mechanics. If this statement were to lose its sense, our argument
about foretelling the future path would fail.

In the early nineteenth century, scientists wanted to reduce all physics
to simple forces acting on material particles that have definite positions
and velocities at any instant. Let us recall how we described motion when
discussing mechanics at the beginning of our journey through the realm
of physical problems. We drew points along a definite path showing the
exact positions of the body at certain instants and then tangent vectors
showing the direction and magnitude of the velocities. This was both
simple and convincing. But it cannot be repeated for our elementary
quanta of matter, that is electrons, or for quanta of energy, that is pho-
tons. We cannot picture the journey of a photon or electron in the way
we imagined motion in classical mechanics. The example of the two pin-
holes shows this clearly. Electron and photon seem to pass through the
two holes. It is thus impossible to explain the effect by picturing the path
of an electron or a photon in the old classical way.
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We must, of course, assume the presence of elementary actions,
such as the passing of electrons or photons through the holes. The
existence of elementary quanta of matter and energy cannot be
doubted. But the elementary laws certainly cannot be formulated by
specifying positions and velocities at any instant in the simple man-
ner of classical mechanics.

Let us, therefore, try something different. Let us continually repeat
the same elementary processes. One after the other, the electrons are
sent in the direction of the pinholes. The word “electron” is used here
for the sake of definiteness; our argument is also valid for photons.

The same experiment is repeated over and over again in exactly
the same way; the electrons all have the same velocity and move in
the direction of the two pinholes. It need hardly be mentioned that
this is an idealized experiment which cannot be carried out in reality
but may well be imagined. We cannot shoot out single photons or
electrons at given instants, like bullets from a gun.

The outcome of repeated experiments must again be dark and
light rings for one hole and dark and light stripes for two. But there
is one essential difference. In the case of one individual electron, the
experimental result was incomprehensible. It is more easily understood
when the experiment is repeated many times. We can now say: light
stripes appear where many electrons fall. The stripes become darker at
the place where fewer electrons are falling. A completely dark spot
means that there are no electrons. We are not, of course, allowed to
assume that all the electrons pass through one of the holes. If this were
so it could not make the slightest difference whether or not the other
is covered. But we already know that covering the second hole does
make a difference. Since one particle is indivisible we cannot imagine
that it passes through both the holes. The fact that the experiment
was repeated many times points to another way out. Some of the elec-
trons may pass through the first hole and others through the second.
We do not know why individual electrons choose particular holes, but
the net result of repeated experiments must be that both pinholes par-
ticipate in transmitting the electrons from the source to the screen. If
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we state only what happens to the crowd of elecrons when the exper-
iment is repeated, not bothering about the behavior of individual par-
ticles, the difference between the ringed and the striped pictures
becomes comprehensible. By the discussion of a sequence of experi-
ments a new idea was born, that of a crowd with the individuals
behaving in an unpredictable way. We cannot foretell the course of
one single electron, but we can predict that, in the net result, the light
and dark stripes will appear on the screen.

Let us leave quantum physics for the moment.
We have seen in classical physics that if we know the position and

velocity of a material point at a certain instant and the forces acting
upon it, we can predict its future path. We also saw how the mechan-
ical point of view was applied to the kinetic theory of matter. But in
this theory a new idea arose from our reasoning. It will be helpful in
understanding later arguments to grasp this idea thoroughly.

There is a vessel containing gas. In attempting to trace the motion
of every particle one would have to commence by finding the initial
states, that is, the initial positions and velocities of all the particles.
Even if this were possible, it would take more than a human lifetime
to set down the result on paper, owing to the enormous number of
particles which would have to be considered. If one then tried to
employ the known methods of classical mechanics for calculating the
final positions of the particles, the difficulties would be insurmount-
able. In principle, it is possible to use the method applied for the
motion of planets, but in practice this is useless and must give way to
the method of statistics. This method dispenses with any exact knowl-
edge of initial states. We know less about the system at any given
moment and are thus less able to say anything about its past or future.
We become indifferent to the fate of the individual gas particles. Our
problem is of a different nature. For example: we do not ask, “What
is the speed of every particle at this moment?” But we may ask: “How
many particles have a speed between 1000 and 1100 feet per second?”
We care nothing for individuals. What we seek to determine are aver-
age values typifying the whole aggregation. It is clear that there can
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be some point in a statistical method of reasoning only when the sys-
tem consists of a large number of individuals.

By applying the statistical method we cannot foretell the behavior
of an individual in a crowd. We can only foretell the chance, the prob-
ability, that it will behave in some particular manner. If our statistical
laws tell us that one-third of the particles have a speed between 1000
and 1100 feet per second, it means that by repeating our observations
for many particles, we shall really obtain this average, or in other
words, that the probability of finding a particle within this limit is
equal to one-third.

Similarly, to know the birth rate of a great community does not
mean knowing whether any particular family is blessed with a child.
It means a knowledge of statistical results in which the contributing
personalities play no role.

By observing the registration plates of a great many cars we can
soon discover that one-third of their numbers are divisible by three.
But we cannot foretell whether the car which will pass in the next
moment will have this property. Statistical laws can be applied only
to big aggregations, but not to their individual members.

We can now return to our quantum problem.
The laws of quantum physics are of a statistical character. This

means: they concern not one single system but an aggregation of iden-
tical systems; they cannot be verified by measurement of one individ-
ual, but only by a series of repeated measurements.

Radioactive disintegration is one of the many events for which
quantum physics tries to formulate laws governing the spontaneous
transmutation from one element to another. We know, for example,
that in 1600 years half of one gram of radium will disintegrate, and
half will remain. We can foretell approximately how many atoms will
disintegrate during the next half-hour, but we cannot say, even in our
theoretical descriptions, why just these particular atoms are doomed.
According to our present knowledge, we have no power to designate
the individual atoms condemned to disintegration. The fate of an
atom does not depend on its age. There is not the slightest trace of a
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law governing their individual behavior. Only statistical laws can be
formulated, laws governing large aggregations of atoms.

Take another example. The luminous gas of some element placed
before a spectroscope shows lines of definite wave-length. The appear-
ance of a discontinuous set of definite wave-lengths is characteristic of
the atomic phenomena in which the existence of elementary quanta
is revealed. But there is still another aspect of this problem. Some of
the spectrum lines are very distinct, others are fainter. A distinct line
means that a comparatively large number of photons belonging to this
particular wave-length are emitted; a faint line means that a compar-
atively small number of photons belonging to this wave-length are
emitted. Theory again gives us statements of a statistical nature only.
Every line corresponds to a transition from higher to lower energy
level. Theory tells us only about the probability of each of these pos-
sible transitions, but nothing about the actual transition of an indi-
vidual atom. The theory works splendidly because all these phenom-
ena involve large aggregations and not single individuals.

It seems that the new quantum physics resembles somewhat the
kinetic theory of matter, since both are of a statistical nature and both
refer to great aggregations. But this is not so! In this analogy an under-
standing not only of the similarities but also of the differences is most
important. The similarity between the kinetic theory of matter and
quantum physics lies chiefly in their statistical character. But what are
the differences? 

If we wish to know how many men and women over the age of
twenty live in a city, we must get every citizen to fill out a form under
the headings: “male,” “female,” and “age.” Provided every answer is cor-
rect, we can obtain, by counting and segregating them, a result of a sta-
tistical nature. The individual names and addresses on the forms are of
no account. Our statistical view is gained by the knowledge of individ-
ual cases. Similarly, in the kinetic theory of matter, we have statistical
laws governing the aggregation, gained on the basis of individual laws.

But in quantum physics the state of affairs is entirely different.
Here the statistical laws are given immediately. The individual laws are
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discarded. In the example of a photon or an electron and two pin-
holes we have seen that we cannot describe the possible motion of ele-
mentary particles in space and time as we did in classical physics.
Quantum physics abandons individual laws of elementary particles
and states directly the statistical laws governing aggregations. It is
impossible, on the basis of quantum physics, to describe positions and
velocities of an elementary particle or to predict its future path as in
classical physics. Quantum physics deals only with aggregations, and
its laws are for crowds and not for individuals.

It is hard necessity and not speculation or a desire for novelty
which forces us to change the old classical view. The difficulties of
applying the old view have been outlined for one instance only, that
of diffraction phenomena. But many others, equally convincing, could
be quoted. Changes of view are continually forced upon us by our
attempts to understand reality. But it always remains for the future to
decide whether we chose the only possible way out and whether or
not a better solution of our difficulties could have been found.

We have had to forsake the description of individual cases as
objective happenings in space and time; we have had to introduce laws
of a statistical nature. These are the chief characteristics of modern
quantum physics.

Previously, when introducing new physical realities, such as the
electromagnetic and gravitational field, we tried to indicate in general
terms the characteristic features of the equations through which the
ideas have been mathematically formulated. We shall now do the same
with quantum physics, referring only very briefly to the work of Bohr,
De Broglie, Schrödinger, Heisenberg, Dirac and Born.

Let us consider the case of one electron. The electron may be under
the influence of an arbitrary foreign electromagnetic field, or free from
all external influences. It may move, for instance, in the field of an atomic
nucleus or it may diffract on a crystal. Quantum physics teaches us how
to formulate the mathematical equations for any of these problems.

We have already recognized the similarity between an oscillating
cord, the membrane of a drum, a wind instrument, or any other
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acoustical instrument on the one hand, and a radiating atom on the
other. There is also some similarity between the mathematical equa-
tions governing the acoustical problem and those governing the prob-
lem of quantum physics. But again the physical interpretation of the
quantities determined in these two cases is quite different. The phys-
ical quantities describing the oscillating cord and the radiating atom
have quite a different meaning, despite some formal likeness in the
equations. In the case of the cord, we ask about the deviation of an
arbitrary point from its normal position at an arbitrary moment.
Knowing the form of the oscillating cord at a given instant, we know
everything we wish. The deviation from the normal can thus be cal-
culated for any other moment from the mathematical equations for
the oscillating cord. The fact that some definite deviation from the
normal position corresponds to every point of the cord is expressed
more rigorously as follows: for any instant, the deviation from the nor-
mal value is a function of the co-ordinates of the cord. All points of
the cord form a one-dimensional continuum, and the deviation is a
function defined in this one-dimensional continuum, to be calculated
from the equations of the oscillating cord.

Analogously, in the case of an electron a certain function is deter-
mined for any point in space and for any moment. We shall call this
function the probability wave. In our analogy the probability wave cor-
responds to the deviation from the normal position in the acoustical
problem. The probability wave is, at a given instant, a function of a
three-dimensional continuum, whereas, in the case of the cord the
deviation was, at a given moment, a function of the one-dimensional
continuum. The probability wave forms the catalogue of our knowl-
edge of the quantum system under consideration and will enable us
to answer all sensible statistical questions concerning this system. It
does not tell us the position and velocity of the electron at any moment
because such a question has no sense in quantum physics. But it will
tell us the probability of meeting the electron on a particular spot, or
where we have the greatest chance of meeting an electron. The result
does not refer to one, but to many repeated measurements. Thus the
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equations of quantum physics determine the probability wave just as
Maxwell’s equations determine the electromagnetic field and the grav-
itational equations determine the gravitational field. The laws of quan-
tum physics are again structure laws. But the meaning of physical con-
cepts determined by these equations of quantum physics is much more
abstract than in the case of electromagnetic and gravitational fields;
they provide only the mathematical means of answering questions of
a statistical nature.

So far we have considered the electron in some external field. If
it were not the electron, the smallest possible charge, but some
respectable charge containing billions of electrons, we could disregard
the whole quantum theory and treat the problem according to our old
pre-quantum physics. Speaking of currents in a wire, of charged con-
ductors, of electromagnetic waves, we can apply our old simple physics
contained in Maxwell’s equations. But we cannot do this when speak-
ing of the photoelectric effect, intensity of spectral lines, radioactivity,
diffraction of electronic waves and many other phenomena in which
the quantum character of matter and energy is revealed. We must then,
so to speak, go one floor higher. Whereas in classical physics we spoke
of positions and velocities of one particle, we must now consider prob-
ability waves, in a three-dimensional continuum corresponding to this
one-particle problem.

Quantum physics gives its own prescription for treating a prob-
lem if we have previously been taught how to treat an analogous prob-
lem from the point of view of classical physics.

For one elementary particle, electron or photon, we have proba-
bility waves in a three-dimensional continuum, characterizing the sta-
tistical behavior of the system if the experiments are often repeated.
But what about the case of not one but two interacting particles, for
instance, two electrons, electron and photon, or electron and nucleus?
We cannot treat them separately and describe each of them through
a probability wave in three dimensions, just because of their mutual
interaction. Indeed, it is not very difficult to guess how to describe in
quantum physics a system composed of two interacting particles. We
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have to descend one floor, to return for a moment to classical physics.
The position of two material points in space, at any moment, is char-
acterized by six numbers, three for each of the points. All possible
positions of the two material points form a six-dimensional contin-
uum and not a three-dimensional one as in the case of one point. If
we now again ascend one floor, to quantum physics, we shall have
probability waves in a six-dimensional continuum and not in a three-
dimensional continuum as in the case of one particle. Similarly, for
three, four, and more particles the probability waves will be functions
in a continuum of nine, twelve, and more dimensions.

This shows clearly that the probability waves are more abstract
than the electromagnetic and gravitational field existing and spreading
in our three-dimensional space. The continuum of many dimensions
forms the background for the probability waves, and only for one par-
ticle does the number of dimensions equal that of physical space. The
only physical significance of the probability wave is that it enables us
to answer sensible statistical questions in the case of many particles as
well as of one. Thus, for instance, for one electron we could ask about
the probability of meeting an electron in some particular spot. For two
particles our question could be: what is the probability of meeting the
two particles at two definite spots at a given instant?

Our first step away from classical physics was abandoning the
description of individual cases as objective events in space and time.
We were forced to apply the statistical method provided by the prob-
ability waves. Once having chosen this way, we are obliged to go fur-
ther toward abstraction. Probability waves in many dimensions corre-
sponding to the many-particle problem must be introduced.

Let us, for the sake of briefness, call everything except quantum
physics, classical physics. Classical and quantum physics differ radi-
cally. Classical physics aims at a description of objects existing in space,
and the formulation of laws governing their changes in time. But the
phenomena revealing the particle and wave nature of matter and radi-
ation, the apparently statistical character of elementary events such as
radioactive disintegration, diffraction, emission of spectral lines, and
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many others, forced us to give up this view. Quantum physics does
not aim at the description of individual objects in space and their
changes in time. There is no place in quantum physics for statements
such as: “This object is so-and-so, has this-and-this property.” Instead
we have statements of this kind: “There is such-and-such a probabil-
ity that the individual object is so-and-so and has this-and-this prop-
erty.” There is no place in quantum physics for laws governing the
changes in time of the individual object. Instead, we have laws gov-
erning the changes in time of the probability. Only this fundamental
change, brought into physics by the quantum theory, made possible
an adequate explanation of the apparently discontinuous and statisti-
cal character of events in the realm of phenomena in which the ele-
mentary quanta of matter and radiation reveal their existence.

Yet new, still more difficult problems arise which have not been
definitely settled as yet. We shall mention only some of these unsolved
problems. Science is not and will never be a closed book. Every impor-
tant advance brings new questions. Every development reveals, in the
long run, new and deeper difficulties.

We already know that in the simple case of one or many particles
we can rise from the classical to the quantum description, from the
objective description of events in space and time to probability waves.
But we remember the all-important field concept in classical physics.
How can we describe interaction between elementary quanta of mat-
ter and field? If a probability wave in thirty dimensions is needed for
the quantum description of ten particles, then a probability wave with
an infinite number of dimensions would be needed for the quantum
description of a field. The transition from the classical field concept
to the corresponding problem of probability waves in quantum physics
is a very difficult step. Ascending one floor is here no easy task and
all attempts so far made to solve the problem must be regarded as
unsatisfactory. There is also one other fundamental problem. In all our
arguments about the transition from classical physics to quantum physics
we used the old prerelativistic description in which space and time are
treated differently. If, however, we try to begin from the classical
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description as proposed by the relativity theory, then our ascent to the
quantum problem seems much more complicated. This is another
problem tackled by modern physics, but still far from a complete and
satisfactory solution. There is still a further difficulty in forming a con-
sistent physics for heavy particles, constituting the nuclei. In spite of
the many experimental data and the many attempts to throw light on
the nuclear problem, we are still in the dark about some of the most
fundamental questions in this domain.

There is no doubt that quantum physics explained a very rich vari-
ety of facts, achieving, for the most part, splendid agreement between
theory and observation. The new quantum physics removes us still
further from the old mechanical view, and a retreat to the former posi-
tion seems, more than ever, unlikely. But there is also no doubt that
quantum physics must still be based on the two concepts: matter and
field. It is, in this sense, a dualistic theory and does not bring our old
problem of reducing everything to the field concept even one step
nearer realization.

Will the further development be along the line chosen in quan-
tum physics, or is it more likely that new revolutionary ideas will be
introduced into physics? Will the road of advance again make a sharp
turn, as it has so often done in the past?

During the last few years all the difficulties of quantum physics
have been concentrated around a few principal points. Physics awaits
their solution impatiently. But there is no way of foreseeing when and
where the clarification of these difficulties will be brought about.

PHYSICS AND REALITY

What are the general conclusions which can be drawn from the devel-
opment of physics indicated here in a broad outline representing only
the most fundamental ideas?

Science is not just a collection of laws, a catalogue of unrelated
facts. It is a creation of the human mind, with its freely invented ideas
and concepts. Physical theories try to form a picture of reality and to
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establish its connection with the wide world of sense impressions.
Thus the only justification for our mental structures is whether and
in what way our theories form such a link.

We have seen new realities created by the advance of physics. But
this chain of creation can be traced back far beyond the starting point
of physics. One of the most primitive concepts is that of an object.
The concepts of a tree, a horse, any material body, are creations gained
on the basis of experience, though the impressions from which they
arise are primitive in comparison with the world of physical phe-
nomena. A cat teasing a mouse also creates, by thought, its own prim-
itive reality. The fact that the cat reacts in a similar way toward any
mouse it meets shows that it forms concepts and theories which are
its guide through its own world of sense impressions.

“Three trees” is something different from “two trees.” Again “two
trees” is different from “two stones.” The concepts of the pure num-
bers 2, 3, 4 . . ., freed from the objects from which they arose, are
creations of the thinking mind which describe the reality of our world.

The psychological subjective feeling of time enables us to order
our impressions, to state that one event precedes another. But to con-
nect every instant of time with a number, by the use of a clock, to
regard time as a one-dimensional continuum, is already an invention.
So also are the concepts of Euclidean and non-Euclidean geometry,
and our space understood as a three-dimensional continuum.

Physics really began with the invention of mass, force, and an iner-
tial system. These concepts are all free inventions. They led to the for-
mulation of the mechanical point of view. For the physicist of the early
nineteenth century, the reality of our outer world consisted of parti-
cles with simple forces acting between them and depending only on
the distance. He tried to retain as long as possible his belief that he
would succeed in explaining all events in nature by these fundamen-
tal concepts of reality. The difficulties connected with the deflection
of the magnetic needle, the difficulties connected with the structure
of the ether, induced us to create a more subtle reality. The important
invention of the electromagnetic field appears. A courageous scientific
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imagination was needed to realize fully that not the behavior of bod-
ies, but the behavior of something between them, that is, the field,
may be essential for ordering and understanding events.

Later developments both destroyed old concepts and created new
ones. Absolute time and the inertial co-ordinate system were aban-
doned by the relativity theory. The background for all events was no
longer the one-dimensional time and the three-dimensional space con-
tinuum, but the four-dimensional time-space continuum, another free
invention, with new transformation properties. The inertial co-ordinate
system was no longer needed. Every co-ordinate system is equally suited
for the description of events in nature.

The quantum theory again created new and essential features of
our reality. Discontinuity replaced continuity. Instead of laws govern-
ing individuals, probability laws appeared.

The reality created by modern physics is, indeed, far removed from
the reality of the early days. But the aim of every physical theory still
remains the same.

With the help of physical theories we try to find our way through
the maze of observed facts, to order and understand the world of our
sense impressions. We want the observed facts to follow logically from
our concept of reality. Without the belief that it is possible to grasp
the reality with our theoretical constructions, without the belief in the
inner harmony of our world, there could be no science. This belief is
and always will remain the fundamental motive for all scientific cre-
ation. Throughout all our efforts, in every dramatic struggle between
old and new views, we recognize the eternal longing for understand-
ing, the ever-firm belief in the harmony of our world, continually
strengthened by the increasing obstacles to comprehension.

WE SUMMARIZE

Again the rich variety of facts in the realm of atomic phenomena forces
us to invent new physical concepts. Matter has a granular structure; it is
composed of elementary particles, the elementary quanta of matter. Thus,
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the electric charge has a granular structure and—most important from the
point of view of the quantum theory—so has energy. Photons are the
energy quanta of which light is composed.

Is light a wave or a shower of photons? Is a beam of electrons a shower
of elementary particles or a wave? These fundamental questions are forced
upon physics by experiment. In seeking to answer them we have to aban-
don the description of atomic events as happenings in space and time, we
have to retreat still further from the old mechanical view. Quantum physics
formulates laws governing crowds and not individuals. Not properties but
probabilities are described, not laws disclosing the future of systems are for-
mulated, but laws governing the changes in time of the probabilities and
relating to great congregations of individuals.
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Autobiographical
Notes

A
lbert Einstein famously said of himself, “Do not worry about
your difficulties in mathematics. I can assure you mine are
still greater.” Though modest about his own abilities and often

caricatured as a poor student (though in reality, simply a willful one),
Einstein showed an unusually intense curiosity about the natural
world, and a drive to learn as much of the scientific and mathemati-
cal cannon as possible. In his “Autobiographical Notes,” Einstein pres-
ents his own very unusual scientific history, unusual if for no other
reason than that it is replete with equations.

This work, perhaps more than any other in the volume, gives us
insight into why Einstein is the icon that he is. In describing his own
education, Einstein gives us a guided tour of the state of science in
his youth. By gradually describing both his contributions and those of
others in relativity and quantum mechanics, we begin to see how
much the world of physics was revolutionized over his lifetime.

While only twelve, Einstein first read Euclid’s “Elements,” which
he called the “Holy Little Geometry Book.” He was awed by the idea
that with a few simple principles, one could derive proofs pertaining
to the real universe. He spent the rest of his life in pursuit of these
proofs, though he was occasionally confounded when his intuition
contradicted what could be or was observed. For example, Euclid’s
theory of geometry formed the foundation of our understanding of
the physical universe. By starting with an assumption that physics is
the same for all observers and that time flows at a constant rate,
Sir Isaac Newton’s theory of mechanics could be directly inferred
from Euclid.

Despite his admiration for their work, Einstein would ultimately
be responsible for overturning the foundations of both Euclidean
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geometry as the coordinate system for our universe, and Newtonian
mechanics as the basis for physics. The dogma for much of the nine-
teenth century was that Newton’s laws of motions were the funda-
mental foundation upon which all future discoveries would be made.
Newton’s picture, simply, was that all of the forces in the universe were
produced by particles, and that all of physics could be cast in terms
of the interactions.

By the time Einstein was born, cracks were already beginning to
appear in the edifice of the particle nature of the physics. In 1864,
James Clerk Maxwell developed a theory of electrodynamics. Einstein
derived considerable inspiration from Maxwell in two important ways.
First, Maxwell’s equations showed that an electromagnetic wave (light)
propagates at a constant speed, regardless of the speed of the source.
This was the important foundation for Einstein’s theory of special
relativity.

Second, Maxwell’s equations formed a field theory. It was the elec-
trical and magnetic field that defined how charged particles behaved,
not the charged particles interacting with each other. This may seem
a subtle distinction, but it is an important one. Ultimately, this con-
cept of the field would form the foundation not only of electromag-
netism, but also for advances in unifying the fundamental forces of
nature.

Einstein concludes his notes with a discussion of general relativ-
ity, his theory of gravity. Part of the elegance of this theory stems from
the fact that to those versed in the mathematics it looks almost iden-
tical to Maxwell’s theory of electrodynamics. This fact was not lost on
Einstein. Indeed, it was one of Einstein’s perennial disappointments
that he was unable to unify electromagnetism and gravity into a sin-
gle unified theory. This remains one of the great unsolved problems
of modern theoretical physics.
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AUTOBIOGRAPHICAL NOTES*
Here I sit in order to write, at the age of 67, something like my own
obituary. I am doing this not merely because Dr. Schilpp has per-
suaded me to do it; but because I do, in fact, believe that it is a good
thing to show those who are striving alongside of us, how one’s own
striving and searching appears to one in retrospect. After some reflec-
tion, I felt how insufficient any such attempt is bound to be. For, how-
ever brief and limited one’s working life may be, and however
predominant may be the ways of error, the exposition of that which
is worthy of communication does nonetheless not come easy—today’s
person of 67 is by no means the same as was the one of 50, of 30, or
of 20. Every reminiscence is colored by today’s being what it is, and
therefore by a deceptive point of view. This consideration could very
well deter. Nevertheless much can be lifted out of one’s own experi-
ence which is not open to another consciousness.

Even when I was a fairly precocious young man the nothingness
of the hopes and strivings which chases most men restlessly through
life came to my consciousness with considerable vitality. Moreover, I
soon discovered the cruelty of that chase, which in those years was
much more carefully covered up by hypocrisy and glittering words
than is the case today. By the mere existence of his stomach everyone
was condemned to participate in that chase. Moreover, it was possible
to satisfy the stomach by such participation, but not man in so far as
he is a thinking and feeling being. As the first way out there was reli-
gion, which is implanted into every child by way of the traditional
education-machine. Thus I came—despite the fact that I was the son
of entirely irreligious ( Jewish) parents—to a deep religiosity, which,
however, found an abrupt ending at the age of 12. Through the read-
ing of popular scientific books I soon reached the conviction that
much in the stories of the Bible could not be true. The consequence
was a positively fanatic [orgy of ] freethinking coupled with the
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impression that youth is intentionally being deceived by the state
through lies; it was a crushing impression. Suspicion against every kind
of authority grew out of this experience, a skeptical attitude towards
the convictions which were alive in any specific social environment—
an attitude which has never again left me, even though later on,
because of a better insight into the causal connections, it lost some of
its original poignancy.

It is quite clear to me that the religious paradise of youth, which
was thus lost, was a first attempt to free myself from the chains of the
“merely-personal,” from an existence which is dominated by wishes,
hopes and primitive feelings. Out yonder there was this huge world,
which exists independently of us human beings and which stands
before us like a great, eternal riddle, at least partially accessible to our
inspection and thinking. The contemplation of this world beckoned
like a liberation, and I soon noticed that many a man whom I had
learned to esteem and to admire had found inner freedom and secu-
rity in devoted occupation with it. The mental grasp of this extra-
personal world within the frame of the given possibilities swam as
highest aim half consciously and half unconsciously before my mind’s
eye. Similarly motivated men of the present and of the past, as well
as the insights which they had achieved, were the friends which could
not be lost. The road to this paradise was not as comfortable and allur-
ing as the road to the religious paradise; but it has proved itself as
trustworthy, and I have never regretted having chosen it.

What I have here said is true only within a certain sense, just as
a drawing consisting of a few strokes can do justice to a complicated
object, full of perplexing details, only in a very limited sense. If an
individual enjoys well-ordered thoughts, it is quite possible that this
side of his nature may grow more pronounced at the cost of other
sides and thus may determine his mentality in increasing degree. In
this case it is well possible that such an individual in retrospect sees a
uniformly systematic development, whereas the actual experience takes
place in kaleidoscopic particular situations. The manifoldness of the
external situations and the narrowness of the momentary content of
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consciousness bring about a sort of atomizing of the life of every
human being. In a man of my type the turning-point of the devel-
opment lies in the fact that gradually the major interest disengages
itself to a far-reaching degree from the momentary and the merely per-
sonal and turns towards the striving for a mental grasp of things.
Looked at from this point of view the above schematic remarks con-
tain as much truth as can be uttered in such brevity.

What, precisely, is “thinking”? When, at the reception of sense-
impressions, memory-pictures emerge, this is not yet “thinking.” And
when such pictures form series, each member of which calls forth
another, this too is not yet “thinking.” When, however, a certain pic-
ture turns up in many such series, then—precisely through such
return—it becomes an ordering element for such series, in that it con-
nects series which in themselves are unconnected. Such an element
becomes an instrument, a concept. I think that the transition from
free association or “dreaming” to thinking is characterized by the more
or less dominating rôle which the “concept” plays in it. It is by no
means necessary that a concept must be connected with a sensorily
cognizable and reproducible sign (word); but when this is the case
thinking becomes by means of that fact communicable.

With what right—the reader will ask—does this man operate so
carelessly and primitively with ideas in such a problematic realm with-
out making even the least effort to prove anything? My defense: all
our thinking is of this nature of a free play with concepts; the justifi-
cation for this play lies in the measure of survey over the experience
of the senses which we are able to achieve with its aid. The concept
of “truth” can not yet be applied to such a structure; to my thinking
this concept can come in question only when a far-reaching agreement
(convention) concerning the elements and rules of the game is already
at hand.

For me it is not dubious that our thinking goes on for the most
part without use of signs (words) and beyond that to a considerable
degree unconsciously. For how, otherwise, should it happen that some-
times we “wonder” quite spontaneously about some experience? This
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“wondering” seems to occur when an experience comes into conflict
with a world of concepts which is already sufficiently fixed in us. When-
ever such a conflict is experienced hard and intensively it reacts back
upon our thought world in a decisive way. The development of this
thought world is in a certain sense a continuous flight from “wonder.”

A wonder of such nature I experienced as a child of 4 or 5 years,
when my father showed me a compass. That this needle behaved in
such a determined way did not at all fit into the nature of events,
which could find a place in the unconscious world of concepts (effect
connected with direct “touch”). I can still remember—or at least
believe I can remember—that this experience made a deep and last-
ing impression upon me. Something deeply hidden had to be behind
things. What man sees before him from infancy causes no reaction of
this kind; he is not surprised over the falling of bodies, concerning
wind and rain, nor concerning the moon or about the fact that the
moon does not fall down, nor concerning the differences between liv-
ing and non-living matter.

At the age of 12 I experienced a second wonder of a totally dif-
ferent nature: in a little book dealing with Euclidian plane geometry,
which came into my hands at the beginning of a schoolyear. Here were
assertions, as for example the intersection of the three altitudes of a
triangle in one point, which—though by no means evident—could
nevertheless be proved with such certainty that any doubt appeared to
be out of the question. This lucidity and certainty made an inde-
scribable impression upon me. That the axiom had to be accepted
unproved did not disturb me. In any case it was quite sufficient for
me if I could peg proofs upon propositions the validity of which did
not seem to me to be dubious. For example I remember that an uncle
told me the Pythagorean theorem before the holy geometry booklet
had come into my hands. After much effort I succeeded in “proving”
this theorem on the basis of the similarity of triangles; in doing so it
seemed to me “evident” that the relations of the sides of the right-
angled triangles would have to be completely determined by one of
the acute angles. Only something which did not in similar fashion
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seem to be “evident” appeared to me to be in need of any proof at
all. Also, the objects with which geometry deals seemed to be of no
different type than the objects of sensory perception, “which can be
seen and touched.” This primitive idea, which probably also lies at the
bottom of the well known Kantian problematic concerning the possi-
bility of “synthetic judgments a priori,” rests obviously upon the fact
that the relation of geometrical concepts to objects of direct experi-
ence (rigid rod, finite interval, etc.) was unconsciously present.

If thus it appeared that it was possible to get certain knowledge
of the objects of experience by means of pure thinking, this “wonder”
rested upon an error. Nevertheless, for anyone who experiences it for
the first time, it is marvellous enough that man is capable at all to
reach such a degree of certainty and purity in pure thinking as the
Greeks showed us for the first time to be possible in geometry.

Now that I have allowed myself to be carried away sufficiently to
interrupt my scantily begun obituary, I shall not hesitate to state here
in a few sentences my epistemological credo, although in what pre-
cedes something has already incidentally been said about this. This
credo actually evolved only much later and very slowly and does not
correspond with the point of view I held in younger years.

I see on the one side the totality of sense-experiences, and, on the
other, the totality of the concepts and propositions which are laid
down in books. The relations between the concepts and propositions
among themselves and each other are of a logical nature, and the busi-
ness of logical thinking is strictly limited to the achievement of the
connection between concepts and propositions among each other
according to firmly laid down rules, which are the concern of logic.
The concepts and propositions get “meaning,” viz., “content,” only
through their connection with sense-experiences. The connection of the
latter with the former is purely intuitive, not itself of a logical nature.
The degree of certainty with which this relation, viz., intuitive connec-
tion, can be undertaken, and nothing else, differentiates empty phan-
tasy from scientific “truth.” The system of concepts is a creation of man
together with the rules of syntax, which constitute the structure of the
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conceptual systems. Although the conceptual systems are logically
entirely arbitrary, they are bound by the aim to permit the most nearly
possible certain (intuitive) and complete co-ordination with the total-
ity of sense-experiences; secondly they aim at greatest possible sparsity
of their logically independent elements (basic concepts and axioms),
i.e., undefined concepts and underived [postulated] propositions.

A proposition is correct if, within a logical system, it is deduced
according to the accepted logical rules. A system has truth-content
according to the certainty and completeness of its co-ordination-
possibility to the totality of experience. A correct proposition borrows
its “truth” from the truth-content of the system to which it belongs.

A remark to the historical development. Hume saw clearly that
certain concepts, as for example that of causality, cannot be deduced
from the material of experience by logical methods. Kant, thoroughly
convinced of the indispensability of certain concepts, took them—just
as they are selected—to be the necessary premises of every kind of
thinking and differentiated them from concepts of empirical origin. I
am convinced, however, that this differentiation is erroneous, i.e., that
it does not do justice to the problem in a natural way. All concepts,
even those which are closest to experience, are from the point of view
of logic freely chosen conventions, just as is the case with the concept
of causality, with which this problematic concerned itself in the first
instance.

And now back to the obituary. At the age of 12–16 I familiarized
myself with the elements of mathematics together with the principles
of differential and integral calculus. In doing so I had the good for-
tune of hitting on books which were not too particular in their logi-
cal rigour, but which made up for this by permitting the main
thoughts to stand out clearly and synoptically. This occupation was,
on the whole, truly fascinating; climaxes were reached whose impres-
sion could easily compete with that of elementary geometry—the basic
idea of analytical geometry, the infinite series, the concepts of differ-
ential and integral. I also had the good fortune of getting to know the
essential results and methods of the entire field of the natural sciences
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in an excellent popular exposition, which limited itself almost
throughout to qualitative aspects (Bernstein’s People’s Books on Natural
Science, a work of 5 or 6 volumes), a work which I read with breath-
less attention. I had also already studied some theoretical physics
when, at the age of 17, I entered the Polytechnic Institute of Zürich
as a student of mathematics and physics.

There I had excellent teachers (for example, Hurwitz, Minkowski),
so that I really could have gotten a sound mathematical education.
However, I worked most of the time in the physical laboratory, fasci-
nated by the direct contact with experience. The balance of the time
I used in the main in order to study at home the works of Kirchhoff,
Helmholtz, Hertz, etc. The fact that I neglected mathematics to a cer-
tain extent had its cause not merely in my stronger interest in the nat-
ural sciences than in mathematics but also in the following strange
experience. I saw that mathematics was split up into numerous spe-
cialities, each of which could easily absorb the short lifetime granted
to us. Consequently I saw myself in the position of Buridan’s ass which
was unable to decide upon any specific bundle of hay. This was obvi-
ously due to the fact that my intuition was not strong enough in the
field of mathematics in order to differentiate clearly the fundamentally
important, that which is really basic, from the rest of the more or less
dispensable erudition. Beyond this, however, my interest in the knowl-
edge of nature was also unqualifiedly stronger; and it was not clear to
me as a student that the approach to a more profound knowledge of
the basic principles of physics is tied up with the most intricate math-
ematical methods. This dawned upon me only gradually after years of
independent scientific work. True enough, physics also was divided
into separate fields, each of which was capable of devouring a short
lifetime of work without having satisfied the hunger for deeper knowl-
edge. The mass of insufficiently connected experimental data was over-
whelming here also. In this field, however, I soon learned to scent out
that which was able to lead to fundamentals and to turn aside from
everything else, from the multitude of things which clutter up the
mind and divert it from the essential. The hitch in this was, of course,
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the fact that one had to cram all this stuff into one’s mind for the
examinations, whether one liked it or not. This coercion had such a
deterring effect [upon me] that, after I had passed the final examina-
tion, I found the consideration of any scientific problems distasteful
to me for an entire year. In justice I must add, moreover, that in
Switzerland we had to suffer far less under such coercion, which
smothers every truly scientific impulse, than is the case in many
another locality. There were altogether only two examinations; aside
from these, one could just about do as one pleased. This was espe-
cially the case if one had a friend, as did I, who attended the lectures
regularly and who worked over their content conscientiously. This
gave one freedom in the choice of pursuits until a few months before
the examination, a freedom which I enjoyed to a great extent and have
gladly taken into the bargain the bad conscience connected with it as
by far the lesser evil. It is, in fact, nothing short of a miracle that the
modern methods of instruction have not yet entirely strangled the holy
curiosity of inquiry; for this delicate little plant, aside from stimula-
tion, stands mainly in need of freedom; without this it goes to wreck
and ruin without fail. It is a very grave mistake to think that the enjoy-
ment of seeing and searching can be promoted by means of coercion
and a sense of duty. To the contrary, I believe that it would be possi-
ble to rob even a healthy beast of prey of its voraciousness, if it were
possible, with the aid of a whip, to force the beast to devour contin-
uously, even when not hungry, especially if the food, handed out under
such coercion, were to be selected accordingly. - - -

Now to the field of physics as it presented itself at that time. In
spite of all the fruitfulness in particulars, dogmatic rigidity prevailed
in matters of principles: In the beginning (if there was such a thing)
God created Newton’s laws of motion together with the necessary
masses and forces. This is all; everything beyond this follows from the
development of appropriate mathematical methods by means of
deduction. What the nineteenth century achieved on the strength of
this basis, especially through the application of the partial differential
equations, was bound to arouse the admiration of every receptive
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person. Newton was probably first to reveal, in his theory of sound-
transmission, the efficacy of partial differential equations. Euler had
already created the foundation of hydrodynamics. But the more pre-
cise development of the mechanics of discrete masses, as the basis of
all physics, was the achievement of the 19th century. What made the
greatest impression upon the student, however, was less the technical
construction of mechanics or the solution of complicated problems
than the achievements of mechanics in areas which apparently had
nothing to do with mechanics: the mechanical theory of light, which
conceived of light as the wave-motion of a quasi-rigid elastic ether,
and above all the kinetic theory of gases:—the independence of the
specific heat of monatomic gases of the atomic weight, the derivation
of the equation of state of a gas and its relation to the specific heat,
the kinetic theory of the dissociation of gases, and above all the quan-
titative connection of viscosity, heat-conduction and diffusion of gases,
which also furnished the absolute magnitude of the atom. These
results supported at the same time mechanics as the foundation of
physics and of the atomic hypothesis, which latter was already firmly
anchored in chemistry. However, in chemistry only the ratios of the
atomic masses played any rôle, not their absolute magnitudes, so that
atomic theory could be viewed more as a visualizing symbol than as
knowledge concerning the factual construction of matter. Apart from
this it was also of profound interest that the statistical theory of clas-
sical mechanics was able to deduce the basic laws of thermodynamics,
something which was in essence already accomplished by Boltzmann.

We must not be surprised, therefore, that, so to speak, all physi-
cists of the last century saw in classical mechanics a firm and final
foundation for all physics, yes, indeed, for all natural science, and that
they never grew tired in their attempts to base Maxwell’s theory of
electro-magnetism, which, in the meantime, was slowly beginning to
win out, upon mechanics as well. Even Maxwell and H. Hertz, who
in retrospect appear as those who demolished the faith in mechanics
as the final basis of all physical thinking, in their conscious thinking
adhered throughout to mechanics as the secured basis of physics. It
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was Ernst Mach who, in his History of Mechanics, shook this dogmatic
faith; this book exercised a profound influence upon me in this regard
while I was a student. I see Mach’s greatness in his incorruptible skep-
ticism and independence; in my younger years, however, Mach’s epis-
temological position also influenced me very greatly, a position which
today appears to me to be essentially untenable. For he did not place
in the correct light the essentially constructive and speculative nature of
thought and more especially of scientific thought; in consequence
of which he condemned theory on precisely those points where its
constructive-speculative character unconcealably comes to light, as for
example in the kinetic atomic theory.

Before I enter upon a critique of mechanics as the foundation of
physics, something of a broadly general nature will first have to be
said concerning the points of view according to which it is possible
to criticize physical theories at all. The first point of view is obvious:
the theory must not contradict empirical facts. However evident this
demand may in the first place appear, its application turns out to
be quite delicate. For it is often, perhaps even always, possible to
adhere to a general theoretical foundation by securing the adaptation
of the theory to the facts by means of artificial additional assumptions.
In any case, however, this first point of view is concerned with the con-
firmation of the theoretical foundation by the available empirical facts.

The second point of view is not concerned with the relation to
the material of observation but with the premises of the theory itself,
with what may briefly but vaguely be characterized as the “natural-
ness” or “logical simplicity” of the premises (of the basic concepts and
of the relations between these which are taken as a basis). This point
of view, an exact formulation of which meets with great difficulties,
has played an important rôle in the selection and evaluation of theo-
ries since time immemorial. The problem here is not simply one of a
kind of enumeration of the logically independent premises (if anything
like this were at all unequivocally possible), but that of a kind of recip-
rocal weighing of incommensurable qualities. Furthermore, among the-
ories of equally “simple” foundation that one is to be taken as superior
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which most sharply delimits the qualities of systems in the abstract
(i.e., contains the most definite claims). Of the “realm” of theories I
need not speak here, inasmuch as we are confining ourselves to such
theories whose object is the totality of all physical appearances. The
second point of view may briefly be characterized as concerning itself
with the “inner perfection” of the theory, whereas the first point of
view refers to the “external confirmation.” The following I reckon as
also belonging to the “inner perfection” of a theory: We prize a the-
ory more highly if, from the logical standpoint, it is not the result of
an arbitrary choice among theories which, among themselves, are of
equal value and analogously constructed.

The meager precision of the assertions contained in the last two
paragraphs I shall not attempt to excuse by lack of sufficient printing
space at my disposal, but confess herewith that I am not, without more
ado [immediately], and perhaps not at all, capable to replace these
hints by more precise definitions. I believe, however, that a sharper
formulation would be possible. In any case it turns out that among
the “augurs” there usually is agreement in judging the “inner perfec-
tion” of the theories and even more so concerning the “degree” of
“external confirmation.”

And now to the critique of mechanics as the basis of physics.
From the first point of view (confirmation by experiment) the

incorporation of wave-optics into the mechanical picture of the world
was bound to arouse serious misgivings. If light was to be interpreted
as undulatory motion in an elastic body (ether), this had to be a
medium which permeates everything; because of the transversality of
the lightwaves in the main similar to a solid body, yet incompressible,
so that longitudinal waves did not exist. This ether had to lead a ghostly
existence alongside the rest of matter, inasmuch as it seemed to offer
no resistance whatever to the motion of “ponderable” bodies. In order
to explain the refraction-indices of transparent bodies as well as the
processes of emission and absorption of radiation, one would have had
to assume complicated reciprocal actions between the two types of mat-
ter, something which was not even seriously tried, let alone achieved.
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Furthermore, the electromagnetic forces necessitated the intro-
duction of electric masses, which, although they had no noticeable
inertia, yet interacted with each other, and whose interaction was,
moreover, in contrast to the force of gravitation, of a polar type.

The factor which finally succeeded, after long hesitation, to bring
the physicists slowly around to give up the faith in the possibility that
all of physics could be founded upon Newton’s mechanics, was the
electrodynamics of Faraday and Maxwell. For this theory and its con-
firmation by Hertz’s experiments showed that there are electromag-
netic phenomena which by their very nature are detached from every
ponderable matter—namely the waves in empty space which consist
of electromagnetic “fields.” If mechanics was to be maintained as the
foundation of physics, Maxwell’s equations had to be interpreted
mechanically. This was zealously but fruitlessly attempted, while the
equations were proving themselves fruitful in mounting degree. One
got used to operating with these fields as independent substances
without finding it necessary to give one’s self an account of their
mechanical nature; thus mechanics as the basis of physics was being
abandoned, almost unnoticeably, because its adaptability to the facts
presented itself finally as hopeless. Since then there exist two types of
conceptual elements, on the one hand, material points with forces at
a distance between them, and, on the other hand, the continuous field.
It presents an intermediate state in physics without a uniform basis
for the entirety, which—although unsatisfactory—is far from having
been superseded. - - -

Now for a few remarks to the critique of mechanics as the foun-
dation of physics from the second, the “interior,” point of view. In
today’s state of science, i.e., after the departure from the mechanical
foundation, such critique has only an interest in method left. But such
a critique is well suited to show the type of argumentation which, in
the choice of theories in the future will have to play an all the greater
rôle the more the basic concepts and axioms distance themselves from
what is directly observable, so that the confrontation of the implica-
tions of theory by the facts becomes constantly more difficult and
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more drawn out. First in line to be mentioned is Mach’s argument,
which, however, had already been clearly recognized by Newton
(bucket experiment). From the standpoint of purely geometrical
description all “rigid” co-ordinate systems are among themselves logi-
cally equivalent. The equations of mechanics (for example this is
already true of the law of inertia) claim validity only when referred to
a specific class of such systems, i.e., the “inertial systems.” In this the
co-ordinate system as bodily object is without any significance. It is
necessary, therefore, in order to justify the necessity of the specific
choice, to look for something which lies outside of the objects (masses,
distances) with which the theory is concerned. For this reason
“absolute space” as originally determinative was quite explicitly intro-
duced by Newton as the omnipresent active participant in all mechan-
ical events; by “absolute” he obviously means uninfluenced by the
masses and by their motion. What makes this state of affairs appear
particularly offensive is the fact that there are supposed to be infinitely
many inertial systems, relative to each other in uniform translation,
which are supposed to be distinguished among all other rigid systems.

Mach conjectures that in a truly rational theory inertia would have
to depend upon the interaction of the masses, precisely as was true for
Newton’s other forces, a conception which for a long time I consid-
ered as in principle the correct one. It presupposes implicitly, however,
that the basic theory should be of the general type of Newton’s
mechanics: masses and their interaction as the original concepts. The
attempt at such a solution does not fit into a consistent field theory,
as will be immediately recognized.

How sound, however, Mach’s critique is in essence can be seen
particularly clearly from the following analogy. Let us imagine people
construct a mechanics, who know only a very small part of the earth’s
surface and who also can not see any stars. They will be inclined to
ascribe special physical attributes to the vertical dimension of space
(direction of the acceleration of falling bodies) and, on the ground of
such a conceptual basis, will offer reasons that the earth is in most
places horizontal. They might not permit themselves to be influenced
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by the argument that as concerns the geometrical properties space is
isotrope and that it is therefore supposed to be unsatisfactory to pos-
tulate basic physical laws, according to which there is supposed to be
a preferential direction; they will probably be inclined (analogously to
Newton) to assert the absoluteness of the vertical, as proved by expe-
rience as something with which one simply would have to come to
terms. The preference given to the vertical over all other spatial direc-
tions is precisely analogous to the preference given to inertial systems
over other rigid co-ordination systems.

Now to [a consideration of ] other arguments which also concern
themselves with the inner simplicity, i.e., naturalness, of mechanics. If
one puts up with the concepts of space (including geometry) and time
without critical doubts, then there exists no reason to object to the
idea of action-at-a-distance, even though such a concept is unsuited
to the ideas which one forms on the basis of the raw experience of
daily life. However, there is another consideration which causes
mechanics, taken as the basis of physics, to appear as primitive. Essen-
tially there exist two laws

(1) the law of motion
(2) the expression for force or potential energy.

The law of motion is precise, although empty, as long as the expres-
sion for the forces is not given. In postulating the latter, however, there
exists great latitude for arbitrary [choice], especially if one omits the
demand, which is not very natural in any case, that the forces depend
only on the co-ordinates (and, for example, not on their differential
quotients with respect to time). Within the framework of theory alone
it is entirely arbitrary that the forces of gravitation (and electricity),
which come from one point are governed by the potential function
(1/r). Additional remark: it has long been known that this function is
the central-symmetrical solution of the simplest (rotation-invariant)
differential equation it would therefore have been a sugges-
tive idea to regard this as a sign that this function is to be regarded
as determined by a law of space, a procedure by which the arbitrari-
ness in the choice of the law of energy would have been removed. This
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is really the first insight which suggests a turning away from the the-
ory of distant forces, a development which—prepared by Faraday,
Maxwell and Hertz—really begins only later on under the external
pressure of experimental data.

I would also like to mention, as one internal asymmetry of this
theory, that the inert mass occuring in the law of motion also appears
in the expression for the gravitational force, but not in the expression
for the other forces. Finally I would like to point to the fact that the
division of energy into two essentially different parts, kinetic and
potential energy, must be felt as unnatural; H. Hertz felt this as so dis-
turbing that, in his very last work, he attempted to free mechanics from
the concept of potential energy (i.e., from the concept of force). - - -

Enough of this, Newton, forgive me; you found the only way
which, in your age, was just about possible for a man of highest
thought- and creative power. The concepts, which you created, are
even today still guiding our thinking in physics, although we now
know that they will have to be replaced by others farther removed
from the sphere of immediate experience, if we aim at a profounder
understanding of relationships.

“Is this supposed to be an obituary?” the astonished reader will
likely ask. I would like to reply: essentially yes. For the essential in the
being of a man of my type lies precisely in what he thinks and how he
thinks, not in what he does or suffers. Consequently, the obituary can
limit itself in the main to the communicating of thoughts which have
played a considerable rôle in my endeavors.—A theory is the more
impressive the greater the simplicity of its premises is, the more differ-
ent kinds of things it relates, and the more extended is its area of appli-
cability. Therefore the deep impression which classical thermodynamics
made upon me. It is the only physical theory of universal content con-
cerning which I am convinced that, within the framework of the appli-
cability of its basic concepts, it will never be overthrown (for the special
attention of those who are skeptics on principle).

The most fascinating subject at the time that I was a student was
Maxwell’s theory. What made this theory appear revolutionary was

353

A STUBBORNLY PERSISTENT ILLUSION



the transition from forces at a distance to fields as fundamental vari-
ables. The incorporation of optics into the theory of electromagnet-
ism, with its relation of the speed of light to the electric and magnetic
absolute system of units as well as the relation of the refraction coëf-
ficient to the dielectric constant, the qualitative relation between the
reflection coëfficient and the metallic conductivity of the body—it
was like a revelation. Aside from the transition to field-theory, i.e.,
the expression of the elementary laws through differential equations,
Maxwell needed only one single hypothetical step—the introduction
of the electrical displacement current in the vacuum and in the dielec-
trica and its magnetic effect, an innovation which was almost pre-
scribed by the formal properties of the differential equations. In this
connection I cannot suppress the remark that the pair Faraday-
Maxwell has a most remarkable inner similarity with the pair Galileo-
Newton—the former of each pair grasping the relations intuitively,
and the second one formulating those relations exactly and applying
them quantitatively.

What rendered the insight into the essence of electromagnetic the-
ory so much more difficult at that time was the following peculiar sit-
uation. Electric or magnetic “field intensities” and “displacements”
were treated as equally elementary variables, empty space as a special
instance of a dielectric body. Matter appeared as the bearer of the field,
not space. By this it was implied that the carrier of the field could have
velocity, and this was naturally to apply to the “vacuum” (ether) also.
Hertz’s electrodynamics of moving bodies rests entirely upon this fun-
damental attitude.

It was the great merit of H. A. Lorentz that he brought about a
change here in a convincing fashion. In principle a field exists, accord-
ing to him, only in empty space. Matter—considered as atoms—is the
only seat of electric charges; between the material particles there is
empty space, the seat of the electromagnetic field, which is created by
the position and velocity of the point charges which are located on
the material particles. Dielectricity, conductivity, etc., are determined
exclusively by the type of mechanical tie connecting the particles, of
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which the bodies consist. The particle-charges create the field, which,
on the other hand, exerts forces upon the charges of the particles, thus
determining the motion of the latter according to Newton’s law of
motion. If one compares this with Newton’s system, the change con-
sists in this: action at a distance is replaced by the field, which thus
also describes the radiation. Gravitation is usually not taken into
account because of its relative smallness; its consideration, however,
was always possible by means of the enrichment of the structure of
the field, i.e., expansion of Maxwell’s law of the field. The physicist of
the present generation regards the point of view achieved by Lorentz
as the only possible one; at that time, however, it was a surprising and
audacious step, without which the later development would not have
been possible.

If one views this phase of the development of theory critically, one
is struck by the dualism which lies in the fact that the material point
in Newton’s sense and the field as continuum are used as elementary
concepts side by side. Kinetic energy and field-energy appear as essen-
tially different things. This appears all the more unsatisfactory inas-
much as, according to Maxwell’s theory, the magnetic field of a moving
electric charge represents inertia. Why not then total inertia? Then
only field-energy would be left, and the particle would be merely an
area of special density of field-energy. In that case one could hope to
deduce the concept of the mass-point together with the equations of
the motion of the particles from the field equations—the disturbing
dualism would have been removed.

H. A. Lorentz knew this very well. However, Maxwell’s equations
did not permit the derivations of the equilibrium of the electricity
which constitutes a particle. Only other, nonlinear field equations
could possibly accomplish such a thing. But no method existed by
which this kind of field equations could be discovered without dete-
riorating into adventurous arbitrariness. In any case one could believe
that it would be possible by and by to find a new and secure foun-
dation for all of physics upon the path which had been so successfully
begun by Faraday and Maxwell. - - -

355

A STUBBORNLY PERSISTENT ILLUSION



Accordingly, the revolution begun by the introduction of the field
was by no means finished. Then it happened that, around the turn of
the century, independently of what we have just been discussing, a sec-
ond fundamental crisis set in, the seriousness of which was suddenly
recognized due to Max Planck’s investigations into heat radiation
(1900). The history of this event is all the more remarkable because,
at least in its first phase, it was not in any way influenced by any sur-
prising discoveries of an experimental nature.

On thermodynamic grounds Kirchhoff had concluded that the
energy density and the spectral composition of radiation in a
Hohlraum, surrounded by impenetrable walls of the temperature T,
would be independent of the nature of the walls. That is to say, the
nonchromatic density of radiation is a universal function of
the frequency and of the absolute temperature T. Thus arose
the interesting problem of determining this function ( , T ) What
could theoretically be ascertained about this function? According to
Maxwell’s theory the radiation had to exert a pressure on the walls,
determined by the total energy density. From this Boltzmann con-
cluded by means of pure thermodynamics, that the entire energy
density of the radiation ( d ) is proportional to In this way
he found a theoretical justification of a law which had previously
been discovered empirically by Stefan, i.e., in this way he connected
this empirical law with the basis of Maxwell’s theory. Thereafter,
by way of an ingenious thermodynamic consideration, which
also made use of Maxwell’s theory, W. Wien found that the uni-
versal function of the two variables and T would have to be of
the form

whereby f ( T ) is a universal function of one variable T only. It
was clear that the theoretical determination of this universal function
f was of fundamental importance—this was precisely the task which
confronted Planck. Careful measurements had led to a very precise
empirical determination of the function f. Relying on those empirical
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measurements, he succeeded in the first place in finding a statement
which rendered the measurements very well indeed:

whereby h and k are two universal constants, the first of which led to
quantum theory. Because of the denominator this formula looks a bit
queer. Was it possible to derive it theoretically? Planck actually did
find a derivation, the imperfections of which remained at first hidden,
which latter fact was most fortunate for the development of physics.
If this formula was correct, it permitted, with the aid of Maxwell’s the-
ory, the calculation of the average energy E of a quasi-monochromatic
oscillator within the field of radiation:

Planck preferred to attempt calculating this latter magnitude theoret-
ically. In this effort, thermodynamics, for the time being, proved no
longer helpful, and neither did Maxwell’s theory. The following cir-
cumstance was unusually encouraging in this formula. For high tem-
peratures (with a fixed ) it yielded the expression

This is the same expression as the kinetic theory of gases yields for the
average energy of a mass-point which is capable of oscillating elasti-
cally in one dimension. For in kinetic gas theory one gets.

whereby R means the constant of the equation of state of a gas and
N the number of molecules per mol, from which constant one can
compute the absolute size of the atom. Putting these two expressions
equal to each other one gets

The one constant of Planck’s formula consequently furnishes exactly
the correct size of the atom. The numerical value agreed satisfactorily
with the determinations of N by means of kinetic gas theory, even
though these latter were not very accurate.
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This was a great success, which Planck clearly recognized. But the
matter has a serious drawback, which Planck fortunately overlooked
at first. For the same considerations demand in fact that the relation

would also have to be valid for low temperatures. In that case,
however, it would be all over with Planck’s formula and with the con-
stant h. From the existing theory, therefore, the correct conclusion
would have been: the average kinetic energy of the oscillator is either
given incorrectly by the theory of gases, which would imply a refuta-
tion of [statistical] mechanics; or else the average energy of the oscil-
lator follows incorrectly from Maxwell’s theory, which would imply a
refutation of the latter. Under such circumstances it is most probable
that both theories are correct only at the limits, but are otherwise false;
this is indeed the situation, as we shall see in what follows. If Planck
had drawn this conclusion, he probably would not have made his great
discovery, because the foundation would have been withdrawn from
his deductive reasoning.

Now back to Planck’s reasoning. On the basis of the kinetic the-
ory of gases Boltzmann had discovered that, aside from a constant fac-
tor, entropy is equivalent to the logarithm of the “probability” of the
state under consideration. Through this insight he recognized the
nature of courses of events which, in the sense of thermodynamics,
are “irreversible.” Seen from the molecular-mechanical point of view,
however, all courses of events are reversible. If one calls a molecular-
theoretically defined state a microscopically described one, or, more
briefly, micro-state, and a state described in terms of thermodynamics
a macro-state, then an immensely large number (Z ) of states belong
to a macroscopic condition. Z then is a measure of the probabality of
a chosen macro-state. This idea appears to be of outstanding impor-
tance also because of the fact that its usefulness is not limited to micro-
scopic description on the basis of mechanics. Planck recognized this
and applied the Boltzmann principle to a system which consists of very
many resonators of the same frequency . The macroscopic situation
is given through the total energy of the oscillation of all resonators, a
micro-condition through determination of the (instantaneous) energy

n
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of each individual resonator. In order then to be able to express the
number of the micro-states belonging to a macro-state by means of a
finite number, he [Planck] divided the total energy into a large but
finite number of identical energy-elements and asked: in how many
ways can these energy-elements be divided among the resonators. The
logarithm of this number, then, furnishes the entropy and thus (via
thermodynamics) the temperature of the system. Planck got his radi-
ation-formula if he chose his energy-elements of the magnitude

The decisive element in doing this lies in the fact that the
result depends on taking for a definite finite value, i.e., that one does
not go to the limit This form of reasoning does not make obvi-
ous the fact that it contradicts the mechanical and electrodynamic
basis, upon which the derivation otherwise depends. Actually, how-
ever, the derivation presupposes implicitly that energy can be absorbed
and emitted by the individual resonator only in “quanta” of magni-
tude h , i.e., that the energy of a mechanical structure capable of oscil-
lations as well as the energy of radiation can be transferred only in
such quanta—in contradiction to the laws of mechanics and electro-
dynamics. The contradiction with dynamics was here fundamental;
whereas, the contradiction with electrodynamics could be less funda-
mental. For the expression for the density of radiation-energy, although
it is compatible with Maxwell’s equations, is not a necessary conse-
quence of these equations. That this expression furnishes important
average-values is shown by the fact that the Stefan-Boltzmann law and
Wien’s law, which are based on it, are in agreement with experience.

All of this was quite clear to me shortly after the appearance of
Planck’s fundamental work; so that, without having a substitute for
classical mechanics, I could nevertheless see to what kind of conse-
quences this law of temperature-radiation leads for the photo-electric
effect and for other related phenomena of the transformation of radiation-
energy, as well as for the specific heat of (especially) solid bodies. All my
attempts, however, to adapt the theoretical foundation of physics to this
[new type of ] knowledge failed completely. It was as if the ground had
been pulled out from under one, with no firm foundation to be seen
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anywhere, upon which one could have built. That this insecure and
contradictory foundation was sufficient to enable a man of Bohr’s
unique instinct and tact to discover the major laws of the spectral lines
and of the electron-shells of the atoms together with their significance
for chemistry appeared to me like a miracle—and appears to me as a
miracle even today. This is the highest form of musicality in the sphere
of thought.

My own interest in those years was less concerned with the detailed
consequences of Planck’s results, however important these might be.
My major question was: What general conclusions can be drawn from
the radiation-formula concerning the structure of radiation and even
more generally concerning the electro-magnetic foundation of physics?
Before I take this up, I must briefly mention a number of investigations
which relate to the Brownian motion and related objects (fluctuation-
phenomena) and which in essence rest upon classical molecular
mechanics. Not acquainted with the earlier investigations of Boltzmann
and Gibbs, which had appeared earlier and actually exhausted the sub-
ject, I developed the statistical mechanics and the molecular-kinetic
theory of thermodynamics which was based on the former. My major
aim in this was to find facts which would guarantee as much as possi-
ble the existence of atoms of definite finite size. In the midst of this I
discovered that, according to atomistic theory, there would have to be
a movement of suspended microscopic particles open to observation,
without knowing that observations concerning the Brownian motion
were already long familiar. The simplest derivation rested upon the fol-
lowing consideration. If the molecular-kinetic theory is essentially cor-
rect, a suspension of visible particles must possess the same kind of
osmotic pressure fulfilling the laws of gases as a solution of molecules.
This osmotic pressure depends upon the actual magnitude of the mol-
ecules, i.e., upon the number of molecules in a gram-equivalent. If the
density of the suspension is inhomogeneous, the osmotic pressure is
inhomogeneous, too, and gives rise to a compensating diffusion, which
can be calculated from the well known mobility of the particles. This
diffusion can, on the other hand, also be considered as the result of
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the random displacement—unknown in magnitude originally—of the
suspended particles due to thermal agitation. By comparing the
amounts obtained for the diffusion current from both types of reason-
ing one reaches quantitatively the statistical law for those displacements,
i.e., the law of the Brownian motion. The agreement of these consid-
erations with experience together with Planck’s determination of the
true molecular size from the law of radiation (for high temperatures)
convinced the sceptics, who were quite numerous at that time
(Ostwald, Mach) of the reality of atoms. The antipathy of these schol-
ars towards atomic theory can indubitably be traced back to their pos-
itivistic philosophical attitude. This is an interesting example of the fact
that even scholars of audacious spirit and fine instinct can be obstructed
in the interpretation of facts by philosophical prejudices. The prejudice—
which has by no means died out in the meantime—consists in the faith
that facts by themselves can and should yield scientific knowledge with-
out free conceptual construction. Such a misconception is possible only
because one does not easily become aware of the free choice of such
concepts, which, through verification and long usage, appear to be
immediately connected with the empirical material.

The success of the theory of the Brownian motion showed again
conclusively that classical mechanics always offered trustworthy results
whenever it was applied to motions in which the higher time deriva-
tives of velocity are negligibly small. Upon this recognition a relatively
direct method can be based which permits us to learn something con-
cerning the constitution of radiation from Planck’s formula. One may
conclude in fact that, in a space filled with radiation, a (vertically to its
plane) freely moving, quasi monochromatically reflecting mirror would
have to go through a kind of Brownian movement, the average kinetic
energy of which equals of the gas-equation for
one gram-molecule, N equals the number of the molecules per mol,

If radiation were not subject to local fluc-
tuations, the mirror would gradually come to rest, because, due to its
motion, it reflects more radiation on its front than on its reverse side.
However, the mirror must experience certain random fluctuations of

T � absolute temperature2.

1
2 1R �N 2T 1R � constant
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the pressure exerted upon it due to the fact that the wave-packets, con-
stituting the radiation, interfere with one another. These can be com-
puted from Maxwell’s theory. This calculation, then, shows that these
pressure variations (especially in the case of small radiation-densities)
are by no means sufficient to impart to the mirror the average kinetic
energy In order to get this result one has to assume rather
that there exists a second type of pressure variations, which can not be
derived from Maxwell’s theory, which corresponds to the assumption
that radiation energy consists of indivisible point-like localized quanta
of the energy h (and of momentum (h c), 
which are reflected undivided. This way of looking at the problem
showed in a drastic and direct way that a type of immediate reality
has to be ascribed to Planck’s quanta, that radiation must, therefore,
possess a kind of molecular structure in energy, which of course con-
tradicts Maxwell’s theory. Considerations concerning radiation which
are based directly on Boltzmann’s entropy-probability-relation (proba-
bility taken equal to statistical temporal frequency) also lead to the
same result. This double nature of radiation (and of material corpus-
cles) is a major property of reality, which has been interpreted by
quantum-mechanics in an ingenious and amazingly successful fashion.
This interpretation, which is looked upon as essentially final by almost
all contemporary physicists, appears to me as only a temporary way
out; a few remarks to this [point] will follow later. - - -

Reflections of this type made it clear to me as long ago as shortly
after 1900, i.e., shortly after Planck’s trailblazing work, that neither
mechanics nor electrodynamics could (except in limiting cases) claim
exact validity. By and by I despaired of the possibility of discovering the
true laws by means of constructive efforts based on known facts. The
longer and the more despairingly I tried, the more I came to the con-
viction that only the discovery of a universal formal principle could lead
us to assured results. The example I saw before me was thermodynam-
ics. The general principle was there given in the theorem: the laws of
nature are such that it is impossible to construct a perpetuum mobile
(of the first and second kind). How, then, could such a universal principle

1c � velocity of light2 2,n�n

1
2 1R�N 2T.
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be found? After ten years of reflection such a principle resulted from a
paradox upon which I had already hit at the age of sixteen: If I pursue
a beam of light with the velocity c (velocity of light in a vacuum), I
should observe such a beam of light as a spatially oscillatory electro-
magnetic field at rest. However, there seems to be no such thing,
whether on the basis of experience or according to Maxwell’s equations.
From the very beginning it appeared to me intuitively clear that, judged
from the stand-point of such an observer, everything would have to hap-
pen according to the same laws as for an observer who, relative to the
earth, was at rest. For how, otherwise, should the first observer know,
i.e., be able to determine, that he is in a state of fast uniform motion?

One sees that in this paradox the germ of the special relativity the-
ory is already contained. Today everyone knows, of course, that all
attempts to clarify this paradox satisfactorily were condemned to fail-
ure as long as the axiom of the absolute character of time, viz., of
simultaneity, unrecognizedly was anchored in the unconscious. Clearly
to recognize this axiom and its arbitrary character really implies already
the solution of the problem. The type of critical reasoning which was
required for the discovery of this central point was decisively furthered,
in my case, especially by the reading of David Hume’s and Ernst
Mach’s philosophical writings.

One had to understand clearly what the spatial co-ordinates and
the temporal duration of events meant in physics. The physical inter-
pretation of the spatial co-ordinates presupposed a fixed body of ref-
erence, which, moreover, had to be in a more or less definite state of
motion (inertial system). In a given inertial system the co-ordinates
meant the results of certain measurements with rigid (stationary) rods.
(One should always be conscious of the fact that the presupposition
of the existence in principle of rigid rods is a presupposition suggested
by approximate experience, but which is, in principle, arbitrary.) With
such an interpretation of the spatial co-ordinates the question of the
validity of Euclidean geometry becomes a problem of physics.

If, then, one tries to interpret the time of an event analogously, one
needs a means for the measurement of the difference in time (in itself
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determined periodic process realized by a system of sufficiently small spa-
tial extension). A clock at rest relative to the system of inertia defines a
local time. The local times of all space points taken together are the
“time,” which belongs to the selected system of inertia, if a means is given
to “set” these clocks relative to each other. One sees that a priori it is not
at all necessary that the “times” thus defined in different inertial systems
agree with one another. One would have noticed this long ago, if, for the
practical experience of everyday life light did not appear (because of the
high value of c), as the means for the statement of absolute simultaneity.

The presupposition of the existence (in principle) of (ideal, viz., per-
fect) measuring rods and clocks is not independent of each other; since
a lightsignal, which is reflected back and forth between the ends of a
rigid rod, constitutes an ideal clock, provided that the postulate of the
constancy of the light-velocity in vacuum does not lead to contradictions.

The above paradox may then be formulated as follows. According
to the rules of connection, used in classical physics, of the spatial co-
ordinates and of the time of events in the transition from one inertial
system to another the two assumptions of

(1) the constancy of the light velocity
(2) the independence of the laws (thus specially also of the law of

the constancy of the light velocity) of the choice of the inertial system
(principle of special relativity) 
are mutually incompatible (despite the fact that both taken separately
are based on experience).

The insight which is fundamental for the special theory of rela-
tivity is this: The assumptions (1) and (2) are compatible if relations
of a new type (“Lorentz-transformation”) are postulated for the con-
version of co-ordinates and the times of events. With the given phys-
ical interpretation of co-ordinates and time, this is by no means merely
a conventional step, but implies certain hypotheses concerning the
actual behavior of moving measuring-rods and clocks, which can be
experimentally validated or disproved.

The universal principle of the special theory of relativity is contained
in the postulate: The laws of physics are invariant with respect to the
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Lorentz-transformations (for the transition from one inertial system to
any other arbitrarily chosen system of inertia). This is a restricting prin-
ciple for natural laws, comparable to the restricting principle of the non-
existence of the perpetuum mobile which underlies thermodynamics.

First a remark concerning the relation of the theory to “four-
dimensional space.” It is a wide-spread error that the special theory of
relativity is supposed to have, to a certain extent, first discovered, or
at any rate, newly introduced, the four-dimensionality of the physical
continuum. This, of course, is not the case. Classical mechanics, too,
is based on the four-dimensional continuum of space and time. But
in the four-dimensional continuum of classical physics the subspaces
with constant time value have an absolute reality, independent of
the choice of the reference system. Because of this [fact], the four-
dimensional continuum falls naturally into a three-dimensional and a
one-dimensional (time), so that the four-dimensional point of view
does not force itself upon one as necessary. The special theory of rela-
tivity, on the other hand, creates a formal dependence between the
way in which the spatial co-ordinates, on the one hand, and the tem-
poral coordinates, on the other, have to enter into the natural laws.

Minkowski’s important contribution to the theory lies in the fol-
lowing: Before Minkowski’s investigation it was necessary to carry out
a Lorentz-transformation on a law in order to test its invariance under
such transformations; he, on the other hand, succeeded in introduc-
ing a formalism such that the mathematical form of the law itself guar-
antees its invariance under Lorentz-transformations. By creating a
four-dimensional tensor-calculus he achieved the same thing for the
four-dimensional space which the ordinary vector-calculus achieves
for the three spatial dimensions. He also showed that the Lorentz-
transformation (apart from a different algebraic sign due to the special
character of time) is nothing but a rotation of the coordinate system
in the four-dimensional space.

First, a remark concerning the theory as it is characterized above. One
is struck [by the fact] that the theory (except for the four-dimensional
space) introduces two kinds of physical things, i.e., (1) measuring rods
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and clocks, (2) all other things, e.g., the electro-magnetic field, the mate-
rial point, etc. This, in a certain sense, is inconsistent; strictly speaking
measuring rods and clocks would have to be represented as solutions of
the basic equations (objects consisting of moving atomic configurations),
not, as it were, as theoretically self-sufficient entities. However, the pro-
cedure justifies itself because it was clear from the very beginning that
the postulates of the theory are not strong enough to deduce from them
sufficiently complete equations for physical events sufficiently free from
arbitrariness, in order to base upon such a foundation a theory of meas-
uring rods and clocks. If one did not wish to forego a physical interpre-
tation of the co-ordinates in general (something which, in itself, would
be possible), it was better to permit such inconsistency—with the obli-
gation, however, of eliminating it at a later stage of the theory. But one
must not legalize the mentioned sin so far as to imagine that intervals
are physical entities of a special type, intrinsically different from other
physical variables (“reducing physics to geometry,” etc.).

We now shall inquire into the insights of definite nature which
physics owes to the special theory of relativity.

(1) There is no such thing as simultaneity of distant events; con-
sequently there is also no such thing as immediate action at a distance
in the sense of Newtonian mechanics. Although the introduction of
actions at a distance, which propogate with the speed of light, remains
thinkable, according to this theory, it appears unnatural; for in such
a theory there could be no such thing as a reasonable statement of the
principle of conservation of energy. It therefore appears unavoidable
that physical reality must be described in terms of continuous func-
tions in space. The material point, therefore, can hardly be conceived
any more as the basic concept of the theory.

(2) The principles of the conservation of momentum and of the
conservation of energy are fused into one single principle. The inert
mass of a closed system is identical with its energy, thus eliminating
mass as an independent concept.

Remark. The speed of light c is one of the quantities which occurs
as “universal constant” in physical equations. If, however, one introduces
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as unit of time instead of the second the time in which light travels
1 cm, c no longer occurs in the equations. In this sense one could say
that the constant c is only an apparently universal constant.

It is obvious and generally accepted that one could eliminate two
more universal constants from physics by introducing, instead of the
gram and the centimeter, properly chosen “natural” units (for exam-
ple, mass and radius of the electron).

If one considers this done, then only “dimension-less” constants
could occur in the basic equations of physics. Concerning such I
would like to state a theorem which at present can not be based upon
anything more than upon a faith in the simplicity, i.e., intelligibility,
of nature: there are no arbitrary constants of this kind; that is to say,
nature is so constituted that it is possible logically to lay down such
strongly determined laws that within these laws only rationally com-
pletely determined constants occur (not constants, therefore, whose
numerical value could be changed without destroying the theory). - - -

The special theory of relativity owes its origin to Maxwell’s equa-
tions of the electromagnetic field. Inversely the latter can be grasped
formally in satisfactory fashion only by way of the special theory of
relativity. Maxwell’s equations are the simplest Lorentz-invariant field
equations which can be postulated for an anti-symmetric tensor
derived from a vector field. This in itself would be satisfactory, if we
did not know from quantum phenomena that Maxwell’s theory does
not do justice to the energetic properties of radiation. But how
Maxwell’s theory would have to be modified in a natural fashion, for
this even the special theory of relativity offers no adequate foothold.
Also to Mach’s question: “how does it come about that inertial sys-
tems are physically distinguished above all other co-ordinate systems?”
this theory offers no answer.

That the special theory of relativity is only the first step of a nec-
essary development became completely clear to me only in my efforts
to represent gravitation in the framework of this theory. In classical
mechanics, interpreted in terms of the field, the potential of gravita-
tion appears as a scalar field (the simplest theoretical possibility of a
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field with a single component). Such a scalar theory of the gravita-
tional field can easily be made invariant under the group of Lorentz-
transformations. The following program appears natural, therefore: The
total physical field consists of a scalar field (gravitation) and a vector
field (electromagnetic field); later insights may eventually make neces-
sary the introduction of still more complicated types of fields; but to
begin with one did not need to bother about this.

The possibility of the realization of this program was, however,
dubious from the very first, because the theory had to combine the
following things:

(1) From the general considerations of special relativity theory
it was clear that the inert mass of a physical system increases with
the total energy (therefore, e.g., with the kinetic energy).

(2) From very accurate experiments (specially from the torsion
balance experiments of Eötvös) it was empirically known with very
high accuracy that the gravitational mass of a body is exactly equal
to its inert mass.

It followed from (1) and (2) that the weight of a system
depends in a precisely known manner on its total energy. If the
theory did not accomplish this or could not do it naturally, it was
to be rejected. The condition is most naturally expressed as fol-
lows: the acceleration of a system falling freely in a given gravi-
tational field is independent of the nature of the falling system
(specially therefore also of its energy content).
It then appeared that, in the framework of the program sketched,

this elementary state of affairs could not at all or at any rate not in
any natural fashion, be represented in a satisfactory way. This con-
vinced me that, within the frame of the special theory of relativity,
there is no room for a satisfactory theory of gravitation.

Now it came to me: The fact of the equality of inert and heavy
mass, i.e., the fact of the independence of the gravitational accelera-
tion of the nature of the falling substance, may be expressed as fol-
lows: In a gravitational field (of small spatial extension) things behave
as they do in a space free of gravitation, if one introduces in it, in
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place of an “inertial system,” a reference system which is accelerated
relative to an inertial system.

If then one conceives of the behavior of a body, in reference to
the latter reference system, as caused by a “real” (not merely apparent)
gravitational field, it is possible to regard this reference system as an
“inertial system” with as much justification as the original reference
system.

So, if one regards as possible, gravitational fields of arbitrary exten-
sion which are not initially restricted by spatial limitations, the con-
cept of the “inertial system” becomes completely empty. The concept,
“acceleration relative to space,” then loses every meaning and with it
the principle of inertia together with the entire paradox of Mach.

The fact of the equality of inert and heavy mass thus leads quite
naturally to the recognition that the basic demand of the special the-
ory of relativity (invariance of the laws under Lorentz-transformations)
is too narrow, i.e., that an invariance of the laws must be postulated
also relative to non-linear transformations of the co-ordinates in the
four-dimensional continuum.

This happened in 1908. Why were another seven years required
for the construction of the general theory of relativity? The main rea-
son lies in the fact that it is not so easy to free oneself from the idea
that co-ordinates must have an immediate metrical meaning. The
transformation took place in approximately the following fashion.

We start with an empty, field-free space, as it occurs—related to
an inertial system—in the sense of the special theory of relativity, as
the simplest of all imaginable physical situations. If we now think of
a non-inertial system introduced by assuming that the new system is
uniformly accelerated against the inertial system (in a three-dimensional
description) in one direction (conveniently defined), then there exists
with reference to this system a static parallel gravitational field. The
reference system may thereby be chosen as rigid, of Euclidian type, in
three-dimensional metric relations. But the time, in which the field
appears as static, is not measured by equally constituted stationary
clocks. From this special example one can already recognize that the
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immediate metric significance of the co-ordinates is lost if one admits
non-linear transformations of co-ordinates at all. To do the latter is,
however, obligatory if one wants to do justice to the equality of gravi-
tational and inert mass by means of the basis of the theory, and if one
wants to overcome Mach’s paradox as concerns the inertial systems.

If, then, one must give up the attempt to give the co-ordinates an
immediate metric meaning (differences of co-ordinates � measurable
lengths, viz., times), one will not be able to avoid treating as equivalent
all co-ordinate systems, which can be created by the continuous trans-
formations of the co-ordinates.

The general theory of relativity, accordingly, proceeds from the fol-
lowing principle: Natural laws are to be expressed by equations which
are covariant under the group of continuous co-ordinate transforma-
tions. This group replaces the group of the Lorentz-transformations of
the special theory of relativity, which forms a sub-group of the former.

This demand by itself is of course not sufficient to serve as point
of departure for the derivation of the basic concepts of physics. In the
first instance one may even contest [the idea] that the demand by itself
contains a real restriction for the physical laws; for it will always be pos-
sible thus to reformulate a law, postulated at first only for certain co-
ordinate systems, such that the new formulation becomes formally
universally co-variant. Beyond this it is clear from the beginning that
an infinitely large number of field-laws can be formulated which have
this property of covariance. The eminent heuristic significance of the
general principles of relativity lies in the fact that it leads us to the search
for those systems of equations which are in their general covariant for-
mulation the simplest ones possible; among these we shall have to look
for the field equations of physical space. Fields which can be transformed
into each other by such transformations describe the same real situation.

The major question for anyone doing research in this field is this:
Of which mathematical type are the variables (functions of the co-
ordinates) which permit the expression of the physical properties of
space (“structure”)? Only after that: Which equations are satisfied by
those variables?
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The answer to these questions is today by no means certain. The
path chosen by the first formulation of the general theory of relativity
can be characterized as follows. Even though we do not know by what
type field-variables (structure) physical space is to be characterized, we
do know with certainty a special case: that of the “field-free” space in
the special theory of relativity. Such a space is characterized by the fact
that for a properly chosen co-ordinate system the expression

. . . . (1)
belonging to two neighboring points, represents a measurable quan-
tity (square of distance), and thus has a real physical meaning. Referred
to an arbitrary system this quantity is expressed as follows:

. . . . . . . (2)
whereby the indices run from 1 to 4. The form a (real) symmetri-
cal tensor. If, after carrying out a transformation on field (1), the first
derivatives of the with respect to the co-ordinates do not vanish,
there exists a gravitational field with reference to this system of co-
ordinates in the sense of the above consideration, a gravitational field,
moreover, of a very special type. Thanks to Riemann’s investigation
of n-dimensional metrical spaces this special field can be invariantly
characterized:

(1) Riemann’s curvature-tensor , formed from the coeffi-
cients of the metric (2) vanishes.

(2) The orbit of a mass-point in reference to the inertial sys-
tem (relative to which (1) is valid) is a straight line, therefore an
extremal (geodetic). The latter, however, is already a characteriza-
tion of the law of motion based on (2).

The universal law of physical space must now be a generalization of
the law just characterized. I now assume that there are two steps of
generalization:

(a) pure gravitational field
(b) general field (in which quantities corresponding some-how to

the electromagnetic field occur, too).
The instance (a) was characterized by the fact that the field can still
be represented by a Riemann-metric (a), i.e., by a symmetric tensor,

Riklm

gik

gik

ds2 � g ik dx idxk

ds2 � dx 2
1 � dx 2

2 � dx 2
3 � dx 2

4
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whereby, however, there is no representation in the form (1) (except
in infinitesimal regions). This means that in the case (a) the Riemann-
tensor does not vanish. It is clear, however, that in this case a field-
law must be valid, which is a generalization (loosening) of this law. If
this law also is to be of the second order of differentiation and linear
in the second derivations, then only the equation, to be obtained by
a single contraction

came under consideration as field-equation in the case of (a). It
appears natural, moreover, to assume that also in the case of (a) the
geodetic line is still to be taken as representing the law of motion of
the material point.

It seemed hopeless to me at that time to venture the attempt of
representing the total field (b) and to ascertain field-laws for it. I pre-
ferred, therefore, to set up a preliminary formal frame for the repre-
sentation of the entire physical reality; this was necessary in order to
be able to investigate, at least preliminarily, the usefulness of the basic
idea of general relativity. This was done as follows.

In Newton’s theory one can write the field-law of gravitation thus:

at points, where the density of matter, ,
vanishes. In general one may write (Poisson equation)

( � mass-density).
In the case of the relativistic theory of the gravitational field takes
the place of On the right side we shall then have to place a ten-
sor also in place of . Since we know from the special theory of rel-
ativity that the (inert) mass equals energy, we shall have to put on the
right side the tensor of energy-density—more precisely the entire
energy-density, insofar as it does not belong to the pure gravitational
field. In this way one gets the field-equations

The second member on the left side is added because of formal reasons;
for the left side is written in such a way that its divergence disappears

Rik � 1
2 gik R � �kTik .

¢�.
Rik

�¢� � 4pk

1� � gravitation-potential2

¢� � 0

0 � Rkl � g imRiklm
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identically in the sense of the absolute differential calculus. The right
side is a formal condensation of all things whose comprehension in
the sense of a field-theory is still problematic. Not for a moment, of
course, did I doubt that this formulation was merely a makeshift in
order to give the general principle of relativity a preliminary closed
expression. For it was essentially not anything more than a theory of
the gravitational field, which was somewhat artificially isolated from a
total field of as yet unknown structure.

If anything in the theory as sketched—apart from the demand of
the invariance of the equations under the group of the continuous co-
ordinate-transformations—can possibly make the claim to final sig-
nificance, then it is the theory of the limiting case of the pure gravi-
tational field and its relation to the metric structure of space. For this
reason, in what immediately follows we shall speak only of the equa-
tions of the pure gravitational field.

The peculiarity of these equations lies, on the one hand, in their
complicated construction, especially their non-linear character, as
regards the field-variables and their derivatives, and, on the other hand,
in the almost compelling necessity with which the transformation-
group determines this complicated field-law. If one had stopped with
the special theory of relativity, i.e., with the invariance under the
Lorentz-group, then the field-law would remain invariant also
within the frame of this narrower group. But, from the point of view
of the narrower group there would at first exist no reason for repre-
senting gravitation by so complicated a structure as is represented by
the symmetric tensor If, nonetheless, one would find sufficient rea-
sons for it, there would then arise an immense number of field-laws out
of quantities , all of which are co-variant under Lorentz-transfor-
mations (not, however, under the general group). However, even if, of
all the conceivable Lorentz-invariant laws, one had accidentally
guessed precisely yet the law which belongs to the wider group, one
would still not yet be on the plane of insight achieved by the general
principle of relativity. For, from the standpoint of the Lorentz-group
two solutions would incorrectly have to be viewed as physically

gik

gik.
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different from each other, if they can be transformed into each other
by a non-linear transformation of co-ordinates, i.e., if they are, from
the point of view of the wider field, only different representations of
the same field.

One more general remark concerning field-structure and the
group. It is clear that in general one will judge a theory to be the more
nearly perfect the simpler a “structure” it postulates and the broader
the group is concerning which the field-equations are invariant. One
sees now that these two demands get in each other’s way. For example:
according to the special theory of relativity (Lorentz-Group) one can
set up a covariant law for simplest structure imaginable (a scalar field),
whereas in the general theory of relativity (wider group of the con-
tinuous transformations of co-ordinates) there is an invariant field-law
only for the more complicated structure of the symmetric tensor. We
have already given physical reasons for the fact that in physics invari-
ance under the wider group has to be demanded:1 from a purely math-
ematical standpoint I can see no necessity for sacrificing the simpler
structure to the generality of the group.

The group of the general relativity is the first one which demands
that the simplest invariant law be no longer linear or homogeneous in
the field-variables and in their differential quotients. This is of funda-
mental importance for the following reason. If the field-law is linear
(and homogeneous), then the sum of two solutions is again a solution;
as, for example: in Maxwell’s field-equations for the vacuum. In such a
theory it is impossible to deduce from the field equations alone an inter-
action between bodies, which can be described separately by means of
solutions of the system. For this reason all theories up to now required,
in addition to the field equations, special equations for the motion of
material bodies under the influence of the fields. In the relativistic the-
ory of gravitation, it is true, the law of motion (geodetic line) was orig-
inally postulated independently in addition to the field-law equations.
Afterwards, however, it became apparent that the law of motion need
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(tensor-) structure implies a naïve inconsequence. Sin remains sin, even if it is committed by otherwise ever so respectable men.



not (and must not) be assumed independently, but that it is already
implicitly contained within the law of the gravitational field.

The essence of this genuinely complicated situation can be visual-
ized as follows: A single material point at rest will be represented by a
gravitational field which is everywhere finite and regular, except at the
position where the material point is located: there the field has a sin-
gularity. If, however, one computes by means of the integration of the
field-equations the field which belongs to two material points at rest,
then this field has, in addition to the singularities at the positions of the
material points, a line consisting of singular points, which connects
the two points. However, it is possible to stipulate a motion of the mate-
rial points in such a way that the gravitational field which is determined
by them does not become singular anywhere at all except at the mate-
rial points. These are precisely those motions which are described in first
approximation by Newton’s laws. One may say, therefore: The masses
move in such fashion that the solution of the field-equation is nowhere
singular except in the mass points. This attribute of the gravitational
equations is intimately connected with their non-linearity, and this is a
consequence of the wider group of transformations.

Now it would of course be possible to object: If singularities are
permitted at the positions of the material points, what justification is
there for forbidding the occurrence of singularities in the rest of space?
This objection would be justified if the equations of gravitation were
to be considered as equations of the total field. [Since this is not the
case], however, one will have to say that the field of a material parti-
cle may the less be viewed as a pure gravitational field the closer one
comes to the position of the particle. If one had the field-equation of
the total field, one would be compelled to demand that the particles
themselves would everywhere be describable as singularity-free solutions
of the completed field-equations. Only then would the general theory
of relativity be a complete theory.

Before I enter upon the question of the completion of the general
theory of relativity, I must take a stand with reference to the most suc-
cessful physical theory of our period, viz., the statistical quantum theory
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which, about twenty-five years ago, took on a consistent logical form
(Schrödinger, Heisenberg, Dirac, Born). This is the only theory at
present which permits a unitary grasp of experiences concerning the
quantum character of micro-mechanical events. This theory, on the
one hand, and the theory of relativity on the other, are both consid-
ered correct in a certain sense, although their combination has resisted
all efforts up to now. This is probably the reason why among con-
temporary theoretical physicists there exist entirely differing opinions
concerning the question as to how the theoretical foundation of the
physics of the future will appear. Will it be a field theory; will it be
in essence a statistical theory? I shall briefly indicate my own thoughts
on this point.

Physics is an attempt conceptually to grasp reality as it is thought
independently of its being observed. In this sense one speaks of “phys-
ical reality.” In pre-quantum physics there was no doubt as to how
this was to be understood. In Newton’s theory reality was determined
by a material point in space and time; in Maxwell’s theory, by the field
in space and time. In quantum mechanics it is not so easily seen. If
one asks: does a -function of the quantum theory represent a real
factual situation in the same sense in which this is the case of a mate-
rial system of points or of an electromagnetic field, one hesitates to
reply with a simple “yes” or “no”; why? What the (at a def-
inite time) asserts, is this: What is the probability for finding a defi-
nite physical magnitude q (or p) in a definitely given interval, if I
measure it at time t ? The probability is here to be viewed as an empir-
ically determinable, and therefore certainly as a “real” quantity which
I may determine if I create the same very often and perform
a q-measurement each time. But what about the single measured value
of q? Did the respective individual system have this q-value even before
the measurement? To this question there is no definite answer within
the framework of the [existing] theory, since the measurement is a
process which implies a finite disturbance of the system from the out-
side; it would therefore be thinkable that the system obtains a definite
numerical value for q (or p), i.e., the measured numerical value, only
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through the measurement itself. For the further discussion I shall
assume two physicists, A and B, who represent a different conception
with reference to the real situation as described by the 

A. The individual system (before the measurement) has a def-
inite value of q (i.e., p) for all variables of the system, and more
specifically, that value which is determined by a measurement of
this variable. Proceeding from this conception, he will state: The

is no exhaustive description of the real situation of the
system but an incomplete description; it expresses only what we
know on the basis of former measurements concerning the system.

B. The individual system (before the measurement) has no def-
inite value of q (i.e., p). The value of the measurement only arises
in cooperation with the unique probability which is given to it in
view of the only through the act of measurement itself.
Proceeding from this conception, he will (or, at least, he may) state:
the is an exhaustive description of the real situation of
the system.
We now present to these two physicists the following instance:

There is to be a system which at the time t of our observation consists
of two partial systems and which at this time are spatially sepa-
rated and (in the sense of the classical physics) are without significant
reciprocity. The total system is to be completely described through a
known in the sense of quantum mechanics. All quan-
tum theoreticians now agree upon the following: If I make a complete
measurement of I get from the results of the measurement and from

an entirely definite of the system The character
of then depends upon what kind of measurement I undertake on 

Now it appears to me that one may speak of the real factual sit-
uation of the partial system Of this real factual situation, we know
to begin with, before the measurement of even less than we know
of a system described by the But on one supposition we
should, in my opinion, absolutely hold fast: the real factual situation
of the system is independent of what is done with the system 
which is spatially separated from the former. According to the type of
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measurement which I make of I get, however, a very different 
for the second partial system Now, however, the real
situation of must be independent of what happens to For the
same real situation of it is possible therefore to find, according to
one’s choice, different types of (One can escape from this
conclusion only by either assuming that the measurement of ((tele-
pathically)) changes the real situation of or by denying independ-
ent real situations as such to things which are spatially separated from
each other. Both alternatives appear to me entirely unacceptable.)

If now the physicists, A and B, accept this consideration as valid,
then B will have to give up his position that the consti-
tutes a complete description of a real factual situation. For in this case
it would be impossible that two different types of could
be co-ordinated with the identical factual situation of 

The statistical character of the present theory would then have to
be a necessary consequence of the incompleteness of the description
of the systems in quantum mechanics, and there would no longer exist
any ground for the supposition that a future basis of physics must be
based upon statistics. - - -

It is my opinion that the contemporary quantum theory by means
of certain definitely laid down basic concepts, which on the whole
have been taken over from classical mechanics, constitutes an opti-
mum formulation of the connections. I believe, however, that this the-
ory offers no useful point of departure for future development. This
is the point at which my expectation departs most widely from that
of contemporary physicists. They are convinced that it is impossible
to account for the essential aspects of quantum phenomena (appar-
ently discontinuous and temporally not determined changes of the sit-
uation of a system, and at the same time corpuscular and undulatory
qualities of the elementary bodies of energy) by means of a theory
which describes the real state of things [objects] by continuous func-
tions of space for which differential equations are valid. They are also
of the opinion that in this way one can not understand the atomic
structure of matter and of radiation. They rather expect that systems
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of differential equations, which could come under consideration for
such a theory, in any case would have no solutions which would be
regular (free from singularity) everywhere in four-dimensional space.
Above everything else, however, they believe that the apparently dis-
continuous character of elementary events can be described only by
means of an essentially statistical theory, in which the discontinuous
changes of the systems are taken into account by way of the contin-
uous changes of the probabilities of the possible states.

All of these remarks seem to me to be quite impressive. However,
the question which is really determinative appears to me to be as
follows: What can be attempted with some hope of success in view of
the present situation of physical theory? At this point it is the experi-
ences with the theory of gravitation which determine my expectations.
These equations give, from my point of view, more warrant for the
expectation to assert something precise than all other equations of
physics. One may, for example, call on Maxwell’s equations of empty
space by way of comparison. These are formulations which coincide
with the experiences of infinitely weak electro-magnetic fields. This
empirical origin already determines their linear form; it has, however,
already been emphasized above that the true laws can not be linear.
Such linear laws fulfill the super-position-principle for their solutions,
but contain no assertions concerning the interaction of elementary
bodies. The true laws can not be linear nor can they be derived from
such. I have learned something else from the theory of gravitation:
No ever so inclusive collection of empirical facts can ever lead to the
setting up of such complicated equations. A theory can be tested by
experience, but there is no way from experience to the setting up of
a theory. Equations of such complexity as are the equations of the
gravitational field can be found only through the discovery of a logi-
cally simple mathematical condition which determines the equations
completely or [at least] almost completely. Once one has those suffi-
ciently strong formal conditions, one requires only little knowledge of
facts for the setting up of a theory; in the case of the equations of
gravitation it is the four-dimensionality and the symmetric tensor as
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expression for the structure of space which, together with the invari-
ance concerning the continuous transformation-group, determine the
equations almost completely.

Our problem is that of finding the field equations for the total
field. The desired structure must be a generalization of the symmetric
tensor. The group must not be any narrower than that of the contin-
uous transformations of co-ordinates. If one introduces a richer struc-
ture, then the group will no longer determine the equations as strongly
as in the case of the symmetrical tensor as structure. Therefore it
would be most beautiful, if one were to succeed in expanding the
group once more, analogous to the step which led from special rela-
tivity to general relativity. More specifically I have attempted to draw
upon the group of the complex transformations of the co-ordinates.
All such endeavors were unsuccessful. I also gave up an open or con-
cealed raising of the number of dimensions of space, an endeavor
which was originally undertaken by Kaluza and which, with its pro-
jective variant, even today has its adherents. We shall limit ourselves
to the four-dimensional space and to the group of the continuous real
transformations of co-ordinates. After many years of fruitless searching
I consider the solution sketched in what follows as the logically most
satisfactory.

In place of the symmetrical the non-symmetrical
tensor is introduced. This magnitude is constituted by a sym-
metric part and by a real or purely imaginary anti-symmetric 
thus:

Viewed from the standpoint of the group the combination of s
and a is arbitrary, because the tensors s and a individually have tensor-
character. It turns out, however, that these (viewed as a whole) play
a quite analogous rôle in the construction of the new theory as the
symmetric in the theory of the pure gravitational field.

This generalization of the space structure seems natural also from
the standpoint of our physical knowledge, because we know that the
electro-magnetic field has to do with an anti-symmetric tensor.
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For the theory of gravitation it is furthermore essential that from
the symmetric it is possible to form the scalar density as well
as the contravariant tensor according to the definition

These concepts can be defined in precisely corresponding manner for
the non-symmetric also for tensor-densities.

In the theory of gravitation it is further essential that for a given
symmetrical -field a field can be defined, which is symmetric in
the lower indices and which, considered geometrically, governs the
parallel displacement of a vector. Analogously for the non-symmetric

a non-symmetric can be defined, according to the formula
(A)

which coincides with the respective relation of the symmetrical g, only
that it is, of course, necessary to pay attention here to the position of
the lower indices in the g and 

Just as in the theory of a symmetrical it is possible to form a
curvature out of the and a contracted curvature Finally,
with the use of a variation principle, together with (A), it is possible
to find compatible field-equations:

Each of the two equations is a consequence of the other, if (A)
is satisfied. means the symmetric, the anti-symmetric part of 

If the anti-symmetric part of vanishes, these formulas reduce
to (A) and —the case of the pure gravitational field.

I believe that these equations constitute the most natural general-
ization of the equations of gravitation.2 The proof of their physical
usefulness is a tremendously difficult task, inasmuch as mere approx-
imations will not suffice. The question is:
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2The theory here proposed, according to my view, represents a fair probability of being found valid, if the way to an exhaustive
description of physical reality on the basis of the continuum turns out to be possible at all.   
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What are the everywhere regular solutions of these equations? - - -
This exposition has fulfilled its purpose if it shows the reader how

the efforts of a life hang together and why they have led to expecta-
tions os a definite form.

INSTITUTE FOR ADVANCED STUDY

PRINCETON, NEW JERSEY
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Selections from 
Out of My Later Years

This collection of essays was written during the last twenty years
of Einstein’s life, after he had made his greatest contributions
to science and had achieved international celebrity as the

preeminent thinker of the time. In a change from his earlier works,
Einstein no longer sought to explain the basic workings of his greatest
theory—relativity—instead laying out a broader historical perspective
on the development of physics. In 1936, when Einstein wrote the
longest and most detailed of these essays, “Physics and Reality,” the sci-
entific world was undergoing a series of revolutions based on new
understanding of both Einstein’s theory of relativity, and quantum
mechanics.

Although Einstein was instrumental in the development of quan-
tum theory with his 1905 paper on the Photoelectric Effect, very few
of his popular writings focus on it. Unlike relativity, which provided
a deterministic explanation of physical phenomena, quantum
mechanics is fundamentally probabilistic, which Einstein had great
difficulty accepting. Consider what quantum theory says: a particle
can exist in two states simultaneously, and will only be forced to make
a particular (and random) choice when the system is observed. Such
systems are so incompatible with the macroscopic world that Einstein
posited that if we were able to investigate microscopic phenomena on
the smallest scales, we would be able to find deterministic relations.

He also took issue with the fact that quantum mechanics requires
an absolute time and space, concepts that were ruled out by his own
theory of relativity. Einstein, Podolsky, and Rosen argued one year ear-
lier that the two theories created a paradox.

Two subatomic particles that were created in a high-energy exper-
iment would be entangled with one another and thus the measurement
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of one would “force” the other, even far away, into a particular quan-
tum state. This idea seemed to suggest that because the effect would
occur instantaneously, a signal between the two was traveling faster
than light, and relativity precludes faster-than-light travel. The mod-
ern interpretation is that the Einstein-Podolsky-Rosen paradox can be
resolved by the fact that no information is flowing from one particle
to the other.

It is clear from his writings that Einstein was well aware that he
was in the midst of a revolution—one that he had, in large part,
helped to bring about. His concerns about the philosophical problems
with relativity and quantum mechanics ultimately resolved themselves
through the development of relativistic quantum mechanics, quantum
field theory, and may ultimately form the foundation for string the-
ory, which in turn may satisfy Einstein’s dream of unifying the forces
of physics.
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THE THEORY OF RELATIVITY

From Albert Einstein: Out of my Later Years, Philosophical Library, 
New York 1950.

Under the title “Relativity: Essence of the Theory of Relativity” originally
published in The American People’s Encyclopedia XVI, Chicago 1949.

Mathematics deals exclusively with the relations of concepts to each
other without consideration of their relation to experience. Physics too
deals with mathematical concepts; however, these concepts attain
physical content only by the clear determination of their relation to
the objects of experience. This in particular is the case for the con-
cepts of motion, space, time.

The theory of relativity is that physical theory which is based on a
consistent physical interpretation of these three concepts. The name
“theory of relativity” is connected with the fact that motion from the point
of view of possible experience always appears as the relative motion of one
object with respect to another (e.g., of a car with respect to the ground, or
the earth with respect to the sun and the fixed stars). Motion is never
observable as “motion with respect to space” or, as it has been expressed,
as “absolute motion.” The “principle of relativity” in its widest sense is
contained in the statement: The totality of physical phenomena is of such
a character that it gives no basis for the introduction of the concept of
“absolute motion”; or shorter but less precise: There is no absolute motion.

It might seem that our insight would gain little from such a neg-
ative statement. In reality, however, it is a strong restriction for the
(conceivable) laws of nature. In this sense there exists an analogy
between the theory of relativity and thermodynamics. The latter too
is based on a negative statement: “There exists no perpetuum mobile.”

The development of the theory of relativity proceeded in two
steps, “special theory of relativity” and “general theory of relativity.”
The latter presumes the validity of the former as a limiting case and
is its consistent continuation.
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A. SPECIAL THEORY OF RELATIVITY
PHYSICAL INTERPRETATION OF SPACE AND TIME

IN CLASSICAL MECHANICS

Geometry, from a physical standpoint, is the totality of laws accord-
ing to which rigid bodies mutually at rest can be placed with respect
to each other (e.g., a triangle consists of three rods whose ends touch
permanently). It is assumed that with such an interpretation the
Euclidean laws are valid. “Space” in this interpretation is in principle
an infinite rigid body (or skeleton) to which the position of all other
bodies is related (body of reference). Analytic geometry (Descartes)
uses as the body of reference, which represents space, three mutually
perpendicular rigid rods on which the “coordinates” (x, y, z) of space
points are measured in the known manner as perpendicular projec-
tions (with the aid of a rigid unit-measure).

Physics deals with “events” in space and time. To each event
belongs, besides its place coordinates x, y, z, a time value t. The latter
was considered measurable by a clock (ideal periodic process) of neg-
ligible spatial extent. This clock C is to be considered at rest at one
point of the coordinate system, e.g., at the coordinate origin

The time of an event taking place at a point 
P (x, y, z) is then defined as the time shown on the clock C simulta-
neously with the event. Here the concept “simultaneous” was assumed
as physically meaningful without special definition. This is a lack of
exactness which seems harmless only since with the help of light (whose
velocity is practically infinite from the point of view of daily experience)
the simultaneity of spatially distant events can apparently be decided
immediately. The special theory of relativity removes this lack of preci-
sion by defining simultaneity physically with the use of light signals.
The time t of the event in P is the reading of the clock C at the time
of arrival of a light signal emitted from the event, corrected with respect
to the time needed for the light signal to travel the distance. This cor-
rection presumes (postulates) that the velocity of light is constant.

This definition reduces the concept of simultaneity of spatially dis-
tant events to that of the simultaneity of events happening at the same

1x � y � z � O2.
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place (coincidence), namely the arrival of the light signal at C and the
reading of C.

Classical mechanics is based on Galileo’s principle: A body is in
rectilinear and uniform motion as long as other bodies do not act on
it. This statement cannot be valid for arbitrary moving systems of
coordinates. It can claim validity only for so-called “inertial systems.”
Inertial systems are in rectilinear and uniform motion with respect to
each other. In classical physics laws claim validity only with respect to
all inertial systems (special principle of relativity).

It is now easy to understand the dilemma which has led to the
special theory of relativity. Experience and theory have gradually led
to the conviction that light in empty space always travels with the
same velocity c independent of its color and the state of motion of
the source of light (principle of the constancy of the velocity of light—
in the following referred to as “L-principle”). Now elementary intu-
itive considerations seem to show that the same light ray cannot move
with respect to all inertial systems with the same velocity c. The 
L-principle seems to contradict the special principle of relativity.

It turns out, however, that this contradiction is only an appar-
ent one which is based essentially on the prejudice about the absolute
character of time or rather of the simultaneity of distant events. We
just saw that x, y, z and t of an event can, for the moment, be defined
only with respect to a certain chosen system of coordinates (inertial
system). The transformation of the x, y, z, t of events which has to
be carried out with the passage from one inertial system to another
(coordinate transformation), is a problem which cannot be solved
without special physical assumptions. However, the following pos-
tulate is exactly sufficient for a solution: The L-principle holds for
all inertial systems (application of the special principle of relativity
to the L-principle). The transformations thus defined, which are
linear in x, y, z, t, are called Lorentz transformations. Lorentz
transformations are formally characterized by the demand that the
expression

dx2 � dy2 � dz2 � c2dt2,
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which is formed from the coordinate differences dx, dy, dz, dt of two
infinitely close events, be invariant (i.e., that through the transforma-
tion it goes over into the same expression formed from the coordinate
differences in the new system).

With the help of the Lorentz transformations the special principle
of relativity can be expressed thus: The laws of nature are invariant with
respect to Lorentz-transformations (i.e., a law of nature does not
change its form if one introduces into it a new inertial system with
the help of a Lorentz-transformation on x, y, z, t).

The special theory of relativity has led to a clear understanding of
the physical concepts of space and time and in connection with this
to a recognition of the behavior of moving measuring rods and clocks.
It has in principle removed the concept of absolute simultaneity and
thereby also that of instantaneous action at a distance in the sense of
Newton. It has shown how the law of motion must be modified in
dealing with motions that are not negligibly small as compared with
the velocity of light. It has led to a formal clarification of Maxwell’s
equations of the electromagnetic field; in particular it has led to an
understanding of the essential oneness of the electric and the magnetic
field. It has unified the laws of conservation of momentum and of
energy into one single law and has demonstrated the equivalence of
mass and energy. From a formal point of view one may characterize
the achievement of the special theory of relativity thus: it has shown
generally the role which the universal constant c (velocity of light)
plays in the laws of nature and has demonstrated that there exists a
close connection between the form in which time on the one hand
and the spatial coordinates on the other hand enter into the laws of
nature.

B. GENERAL THEORY OF RELATIVITY

The special theory of relativity retained the basis of classical mechan-
ics in one fundamental point, namely the statement: The laws of
nature are valid only with respect to inertial systems. The “permissible”
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transformations for the coordinates (i.e., those which leave the form of
the laws unchanged) are exclusively the (linear) Lorentz-transformations.
Is this restriction really founded in physical facts? The following argu-
ment convincingly denies it.

Principle of equivalence. A body has an inertial mass (resistance
to acceleration) and a heavy mass (which determines the weight of the
body in a given gravitational field, e.g., that at the surface of the earth).
These two quantities, so different according to their definition, are
according to experience measured by one and the same number. There
must be a deeper reason for this. The fact can also be described thus:
In a gravitational field different masses receive the same acceleration.
Finally, it can also be expressed thus: Bodies in a gravitational field
behave as in the absence of a gravitational field if, in the latter case,
the system of reference used is a uniformly accelerated coordinate sys-
tem (instead of an inertial system).

There seems, therefore, to be no reason to ban the following inter-
pretation of the latter case. One considers the system as being “at rest”
and considers the “apparent” gravitational field which exists with
respect to it as a “real” one. This gravitational field “generated” by the
acceleration of the coordinate system would of course be of unlimited
extent in such a way that it could not be caused by gravitational masses
in a finite region; however, if we are looking for a field-like theory,
this fact need not deter us. With this interpretation the inertial sys-
tem loses its meaning and one has an “explanation” for the equality
of heavy and inertial mass (the same property of matter appears as
weight or as inertia depending on the mode of description).

Considered formally, the admission of a coordinate system which
is accelerated with respect to the original “inertial” coordinates means
the admission of non-linear coordinate transformations, hence a
mighty enlargement of the idea of invariance, i.e., the principle of
relativity.

First, a penetrating discussion, using the results of the special the-
ory of relativity, shows that with such a generalization the coordinates
can no longer be interpreted directly as the results of measurements.
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Only the coordinate difference together with the field quantities which
describe the gravitational field determine measurable distances between
events. After one has found oneself forced to admit non-linear coordi-
nate transformations as transformations between equivalent coordinate
systems, the simplest demand appears to admit all continuous coordi-
nate transformations (which form a group), i.e., to admit arbitrary
curvilinear coordinate systems in which the fields are described by reg-
ular functions (general principle of relativity).

Now it is not difficult to understand why the general principle of
relativity (on the basis of the equivalence principle) has led to a theory
of gravitation. There is a special kind of space whose physical struc-
ture (field) we can presume as precisely known on the basis of the spe-
cial theory of relativity. This is empty space without electromagnetic
field and without matter. It is completely determined by its “metric”
property: Let be the coordinate differences of two
infinitesimally near points (events); then

(1)

is a measurable quantity which is independent of the special choice of
the inertial system. If one introduces in this space the new coordinates

through a general transformation of coordinates, then the
quantity for the same pair of points has an expression of the form

(2) (summed for i and k from 1 to 4)

where . The which form a “symmetric tensor” and are
continuous functions of then describe according to the
“principle of equivalence” a gravitational field of a special kind
(namely one which can be retransformed to the form (1)). From
Riemann’s investigations on metric spaces the mathematical proper-
ties of this field can be given exactly (“Riemann-condition”).
However, what we are looking for are the equations satisfied by “gen-
eral” gravitational fields. It is natural to assume that they too can be
described as tensor-fields of the type which in general do not
admit a transformation to the form (1), i.e., which do not satisfy
the “Riemann condition,” but weaker conditions, which, just as the
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Riemann condition, are independent of the choice of coordinates
(i.e., are generally invariant). A simple formal consideration leads to
weaker conditions which are closely connected with the Riemann
condition. These conditions are the very equations of the pure grav-
itational field (on the outside of matter and at the absence of an
electromagnetic field).

These equations yield Newton’s equations of gravitational mechan-
ics as an approximate law and in addition certain small effects which
have been confirmed by observation (deflection of light by the gravi-
tational field of a star, influence of the gravitational on the frequency
of emitted light, slow rotation of the elliptic circuits of planets—
perihelion motion of the planet Mercury). They further yield an expla-
nation for the expanding motion of galactic systems, which is mani-
fested by the red-shift of the light omitted from these systems.

The general theory of relativity is as yet incomplete insofar as it
has been able to apply the general principle of relativity satisfactorily
only to gravitational fields, but not to the total field. We do not yet
know with certainty, by what mathematical mechanism the total field
in space is to be described and what the general invariant laws are to
which this total field is subject. One thing, however, seems certain:
namely, that the general principle of relativity will prove a necessary
and effective tool for the solution of the problem of the total field.
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E � Mc2

From Albert Einstein: Out of my Later Years, Philosophical Library, 
New York 1950.

First published in Science Illustrated, first issue, April 1946.

In order to understand the law of the equivalence of mass and
energy, we must go back to two conservation or “balance” principles
which, independent of each other, held a high place in pre-relativity
physics. These were the principle of the conservation of energy and
the principle of the conservation of mass. The first of these, advanced
by Leibnitz as long ago as the seventeenth century, was developed in
the nineteenth century essentially as a corollary of a principle of
mechanics.
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Drawing from Dr. Einstein’s manuscript.

Consider, for example, a pendulum whose mass swings back and
forth between the points A and B. At these points the mass m is higher
by the amount h than it is at C, the lowest point of the path (see
drawing). At C, on the other hand, the lifting height has disappeared
and instead of it the mass has a velocity v. It is as though the lifting
height could be converted entirely into velocity, and vice versa. The
exact relation would be expressed as with g representing
the acceleration of gravity. What is interesting here is that this rela-
tion is independent of both the length of the pendulum and the form
of the path through which the mass moves.

The significance is that something remains constant throughout
the process, and that something is energy. At A and at B it is an energy
of position, or “potential” energy; at C it is an energy of motion, or
“kinetic” energy. If this concept is correct, then the sum mgh � m v

2

2

mgh � m
2 v2,



must have the same value for any position of the pendulum, if h is
understood to represent the height above C, and v the velocity at that
point in the pendulum’s path. And such is found to be actually the
case. The generalization of this principle gives us the law of the
conservation of mechanical energy. But what happens when friction
stops the pendulum?

The answer to that was found in the study of heat phenomena. This
study, based on the assumption that heat is an indestructible substance
which flows from a warmer to a colder object, seemed to give us a prin-
ciple of the “conservation of heat.” On the other hand, from time imme-
morial it has been known that heat could be produced by friction, as
in the fire-making drills of the Indians. The physicists were for long
unable to account for this kind of heat “production.” Their difficulties
were overcome only when it was successfully established that, for any
given amount of heat produced by friction, an exactly proportional
amount of energy had to be expended. Thus did we arrive at a princi-
ple of the “equivalence of work and heat.” With our pendulum, for
example, mechanical energy is gradually converted by friction into heat.

In such fashion the principles of the conservation of mechanical
and thermal energies were merged into one. The physicists were there-
upon persuaded that the conservation principle could be further
extended to take in chemical and electromagnetic processes—in short,
could be applied to all fields. It appeared that in our physical system
there was a sum total of energies that remained constant through all
changes that might occur.

Now for the principle of the conservation. Mass is defined by the
resistance that a body opposes to its acceleration (inert mass). It is also
measured by the weight of the body (heavy mass). That these two rad-
ically different definitions lead to the same value for the mass of a
body is, in itself, an astonishing fact. According to the principle—
namely, that masses remain unchanged under any physical or chemi-
cal changes—the mass appeared to be the essential (because unvary-
ing) quality of matter. Heating, melting, vaporization, or combining
into chemical compounds would not change the total mass.
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Physicists accepted this principle up to a few decades ago. But it
proved inadequate in the face of the special theory of relativity. It was
therefore merged with the energy principle just as, about 60 years
before, the principle of the conservation of mechanical energy had
been combined with the principle of the conservation of heat. We
might say that the principle of the conservation of energy, having pre-
viously swallowed up that of the conservation of heat, now proceeded
to swallow that of the conservation of mass—and holds the field alone.

It is customary to express the equivalence of mass and energy
(though somewhat inexactly) by the formula in which c rep-
resents the velocity of light, about 186,000 miles per second. E is the
energy that is contained in a stationary body; m is its mass. The energy
that belongs to the mass m is equal to this mass, multiplied by the
square of the enormous speed of light—which is to say, a vast amount
of energy for every unit of mass.

But if every gram of material contains this tremendous energy,
why did it go so long unnoticed? The answer is simple enough: so
long as none of the energy is given off externally, it cannot be
observed. It is as though a man who is fabulously rich should never
spend or give away a cent; no one could tell how rich he was.

Now we can reverse the relation that an increase of E in the

amount of energy must be accompanied by an increase of in the

mass. I can easily supply energy to the mass—for instance, if I heat it
by 10 degrees. So why not measure the mass increase, or weight
increase, connected with this change? The trouble here is that in the
mass increase the enormous factor occurs in the denominator of the
fraction. In such a case the increase is too small to be measured
directly; even with the most sensitive balance.

For a mass increase to be measurable, the change of energy per
mass unit must be enormously large. We know of only one sphere in
which such amounts of energy per mass unit are released: namely,
radioactive disintegration. Schematically, the process goes like this: An
atom of the mass M splits into two atoms of the mass and M–,M¿

c2

E
c2

E � mc2,
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which separate with tremendous kinetic energy. If we imagine these
two masses as brought to rest—that is, if we take this energy of motion
from them—then, considered together, they are essentially poorer in
energy than was the original atom. According to the equivalence prin-
ciple, the mass sum of the disintegration products must
also be somewhat smaller than the original mass M of the disinte-
grating atom—in contradiction to the old principle of the conserva-
tion of mass. The relative difference of the two is on the order of 
of one percent.

Now, we cannot actually weigh the atoms individually. However,
there are indirect methods for measuring their weights exactly. We can
likewise determine the kinetic energies that are transferred to the dis-
integration products and Thus it has become possible to test
and confirm the equivalence formula. Also, the law permits us to cal-
culate in advance, from precisely determined atom weights, just how
much energy will be released with any atom disintegration we have in
mind. The law says nothing, of course, as to whether—or how—the
disintegration reaction can be brought about.

What takes place can be illustrated with the help of our rich man.
The atom M is a rich miser who, during his life, gives away no money
(energy). But in his will he bequeaths his fortune to his sons and

on condition that they give to the community a small amount,
less than one thousandth of the whole estate (energy or mass). The sons
together have somewhat less than the father had (the mass sum

is somewhat smaller than the mass M of the radioactive atom).
But the part given to the community, though relatively small, is still
so enormously large (considered as kinetic energy) that it brings with it
a great threat of evil. Averting that threat has become the most urgent
problem of our time.

M¿ � M–

M–,
M¿

M–.M¿

1
10

M ¿ � M–
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WHAT IS THE THEORY

OF RELATIVITY?
From Albert Einstein: Out of my Later Years, Philosophical Library, 

New York 1950.

Written at the request of Times, London. First published under the tittle
“My Theory” in Times, Nov 28, 1919.

I gladly accede to the request of your colleague to write something for
The Times on relativity. After the lamentable breakdown of the old
active intercourse between men of learning, I welcome this opportu-
nity of expressing my feelings of joy and gratitude towards the
astronomers and physicists of England. It is thoroughly in keeping
with the great and proud traditions of scientific work in your coun-
try that eminent scientists should have spent much time and trouble,
and your scientific institutions have spared no expense, to test the
implications of a theory which was perfected and published during
the War in the land of your enemies. Even though the investigation
of the influence of the gravitational field of the sun on light rays is a
purely objective matter, I cannot forbear to express my personal thanks
to my English colleagues for their work; for without it I could hardly
have lived to see the most important implication of my theory tested.

We can distinguish various kinds of theories in physics. Most of
them are constructive. They attempt to build up a picture of the more
complex phenomena out of the materials of a relatively simple formal
scheme from which they start out. Thus the kinetic theory of gases
seeks to reduce mechanical, thermal and diffusional processes to move-
ments of molecules—i.e., to build them up out of the hypothesis of
molecular motion. When we say that we have succeeded in under-
standing a group of natural processes, we invariably mean that a con-
structive theory has been found which covers the processes in question.

Along with this most important class of theories there exists a sec-
ond, which I will call “principle-theories.” These employ the analytic,

396

SELECTIONS FROM OUT OF MY LATER YEARS



not the synthetic, method. The elements which form their basis and
starting-point are not hypothetically constructed but empirically dis-
covered ones, general characteristics of natural processes, principles that
give rise to mathematically formulated criteria which the separate
processes or the theoretical representations of them have to satisfy. Thus
the science of thermodynamics seeks by analytical means to deduce nec-
essary connections, which separate events have to satisfy, from the uni-
versally experienced fact that perpetual motion is impossible.

The advantages of the constructive theory are completeness, adapt-
ability and clearness, those of the principle theory are logical perfec-
tion and security of the foundations.

The theory of relativity belongs to the latter class. In order to grasp
its nature, one needs first of all to become acquainted with the princi-
ples on which it is based. Before I go into these, however, I must observe
that the theory of relativity resembles a building consisting of two
separate stories, the special theory and the general theory. The special
theory, on which the general theory rests, applies to all physical phe-
nomena with the exception of gravitation; the general theory provides
the law of gravitation and its relations to the other forces of nature.

It has, of course, been known since the days of the ancient Greeks
that in order to describe the movement of a body, a second body is
needed to which the movement of the first is referred. The movement
of a vehicle is considered in reference to the earth’s surface, that of a
planet to the totality of the visible fixed stars. In physics the body to
which events are spatially referred is called the co-ordinate system. The
laws of the mechanics of Galileo and Newton, for instance, can only
be formulated with the aid of a coordinate system.

The state of motion of the co-ordinate system may not, however,
be arbitrarily chosen, if the laws of mechanics are to be valid (it must
be free from rotation and acceleration). A co-ordinate system which is
admitted in mechanics is called an “inertial system.” The state of
motion of an inertial system is according to mechanics not one that is
determined uniquely by nature. On the contrary, the following definition
holds good:—a co-ordinate system that is moved uniformly and in a
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straight line relatively to an inertial system is likewise an inertial sys-
tem. By the “special principle of relativity” is meant the generalization
of this definition to include any natural event whatever: thus, every
universal law of nature which is valid in relation to a co-ordinate system
C, must also be valid, as it stands, in relation to a co-ordinate system C�,
which is in uniform translatory motion relatively to C.

The second principle, on which the special theory of relativity
rests, is the “principle of the constant velocity of light in vacuo.” This
principle asserts that light in vacuo always has a definite velocity of
propagation (independent of the state of motion of the observer or of
the source of the light). The confidence which physicists place in this
principle springs from the successes achieved by the electro-dynamics
of Clerk Maxwell and Lorentz.

Both the above-mentioned principles are powerfully supported by
experience, but appear not to be logically reconcilable. The special the-
ory of relativity finally succeeded in reconciling them logically by a
modification of kinematics—i.e., of the doctrine of the laws relating
to space and time (from the point of view of physics). It became clear
that to speak of the simultaneity of two events had no meaning except
in relation to a given co-ordinate system, and that the shape of meas-
uring devices and the speed at which clocks move depend on their
state of motion with respect to the co-ordinate system.

But the old physics, including the laws of motion of Galileo and
Newton, did not fit in with the suggested relativist kinematics. From
the latter, general mathematical conditions issued, to which natural
laws had to conform, if the above-mentioned two principles were
really to apply. To these, physics had to be adapted. In particular,
scientists arrived at a new law of motion for (rapidly moving) mass
points, which was admirably confirmed in the case of electrically
charged particles. The most important upshot of the special theory
of relativity concerned the inert mass of corporeal systems. It turned
out that the inertia of a system necessarily depends on its energy-
content, and this led straight to the notion that inert mass is sim-
ply latent energy. The principle of the conservation of mass lost its
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independence and became fused with that of the conservation of
energy.

The special theory of relativity, which was simply a systematic devel-
opment of the electro-dynamics of Clerk Maxwell and Lorentz, pointed
beyond itself, however. Should the independence of physical laws of the
state of motion of the co-ordinate system be restricted to the uniform
translatory motion of co-ordinate systems in respect to each other? What
has nature to do with our coordinate systems and their state of motion?
If it is necessary for the purpose of describing nature, to make use of a
co-ordinate system arbitrarily introduced by us, then the choice of its
state of motion ought to be subject to no restriction; the laws ought to
be entirely independent of this choice (general principle of relativity).

The establishment of this general principle of relativity is made eas-
ier by a fact of experience that has long been known, namely that the
weight and the inertia of a body are controlled by the same constant.
(Equality of inertial and gravitational mass.) Imagine a co-ordinate sys-
tem which is rotating uniformly with respect to an inertial system in
the Newtonian manner. The centrifugal forces which manifest them-
selves in relation to this system must, according to Newton’s teaching,
be regarded as effects of inertia. But these centrifugal forces are, exactly
like the forces of gravity, proportional to the masses of the bodies.
Ought it not to be possible in this case to regard the co-ordinate sys-
tem as stationary and the centrifugal forces as gravitational forces? This
seems the obvious view, but classical mechanics forbid it.

This hasty consideration suggests that a general theory of relativ-
ity must supply the laws of gravitation, and the consistent following
up of the idea has justified our hopes.

But the path was thornier than one might suppose, because it
demanded the abandonment of Euclidean geometry. This is to say, the
laws according to which fixed bodies may be arranged in space, do
not completely accord with the spatial laws attributed to bodies by
Euclidean geometry. This is what we mean when we talk of the “cur-
vature of space.” The fundamental concepts of the “straight line,” the
“plan,” etc., thereby lose their precise significance in physics.
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In the general theory of relativity the doctrine of space and time,
or kinematics, no longer figures as a fundamental independent of the
rest of physics. The geometrical behavior of bodies and the motion of
clocks rather depend on gravitational fields, which in their turn are
produced by matter.

The new theory of gravitation diverges considerably, as regards
principles, from Newton’s theory. But its practical results agree so
nearly with those of Newton’s theory that it is difficult to find crite-
ria for distinguishing them which are accessible to experience. Such
have been discovered so far:—

1. In the revolution of the ellipses of the planetary orbits
round the sun (confirmed in the case of Mercury).

2. In the curving of light rays by the action of gravitational
fields (confirmed by the English photographs of eclipses).

3. In a displacement of the spectral lines towards the red end
of the spectrum in the case of light transmitted to us from stars
of considerable magnitude (unconfirmed so far).*
The chief attraction of the theory lies in its logical completeness.

If a single one of the conclusions drawn from it proves wrong, it must
be given up; to modify it without destroying the whole structure seems
to be impossible.

Let no one suppose, however, that the mighty work of Newton can
really be superseded by this or any other theory. His great and lucid ideas
will retain their unique significance for all time as the foundation of our
whole modern conceptual structure in the sphere of natural philosophy.

NOTE: Some of the statements in your paper concerning my life
and person owe their origin to the lively imagination of the writer. Here
is yet another application of the principle of relativity for the delecta-
tion of the reader:—Today I am described in Germany as a “German
savant,” and in England as a “Swiss Jew.” Should it ever be my fate to
be represented as a bête noire, I should, on the contrary, become a
“Swiss Jew” for the Germans and a “German savant” for the English.
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PHYSICS AND REALITY

From Albert Einstein: Out of my Later Years, Philosophical Library, 
New York 1950.

Originally published in the Journal of the Franklin Institute, vol. 221,
March 1936.

1. GENERAL CONSIDERATION CONCERNING
THE METHOD OF SCIENCE

It has often been said, and certainly not without justification, that the
man of science is a poor philosopher. Why then should it not be the
right thing for the physicist to let the philosopher do the philoso-
phizing? Such might indeed be the right thing at a time when the
physicist believes he has at his disposal a rigid system of fundamental
concepts and fundamental laws which are so well established that
waves of doubt can not reach them; but, it can not be right at a time
when the very foundations of physics itself have become problematic
as they are now. At a time like the present, when experience forces us
to seek a newer and more solid foundation, the physicist cannot sim-
ply surrender to the philosopher the critical contemplation of the the-
oretical foundations; for, he himself knows best, and feels more surely
where the shoe pinches. In looking for a new foundation, he must try
to make clear in his own mind just how far the concepts which he
uses are justified, and are necessities.

The whole of science is nothing more than a refinement of every-
day thinking. It is for this reason that the critical thinking of the physi-
cist cannot possibly be restricted to the examination of the concepts
of his own specific field. He cannot proceed without considering crit-
ically a much more difficult problem, the problem of analyzing the
nature of everyday thinking.

On the stage of our subconscious mind appear in colorful suc-
cession sense experiences, memory pictures of them, representations
and feelings. In contrast to psychology, physics treats directly only of
sense experiences and of the “understanding” of their connection. But
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even the concept of the “real external world” of everyday thinking rests
exclusively on sense impressions.

Now we must first remark that the differentiation between sense
impressions and representations is not possible; or, at least it is not
possible with absolute certainty. With the discussion of this problem,
which affects also the notion of reality, we will not concern ourselves
but we shall take the existence of sense experiences as given, that is to
say as psychic experiences of special kind.

I believe that the first step in the setting of a “real external world”
is the formation of the concept of bodily objects and of bodily objects
of various kinds. Out of the multitude of our sense experiences we take,
mentally and arbitrarily, certain repeatedly occurring complexes of sense
impression (partly in conjunction with sense impressions which are
interpreted as signs for sense experiences of others), and we attribute to
them a meaning—the meaning of the bodily object. Considered logi-
cally this concept is not identical with the totality of sense impressions
referred to; but it is an arbitrary creation of the human (or animal)
mind. On the other hand, the concept owes its meaning and its justi-
fication exclusively to the totality of the sense impressions which we
associate with it.

The second step is to be found in the fact that, in our thinking
(which determines our expectation), we attribute to this concept of
the bodily object a significance, which is to a high degree independ-
ent of the sense impression which originally gives rise to it. This is
what we mean when we attribute to the bodily object “a real exis-
tence.” The justification of such a setting rests exclusively on the fact
that, by means of such concepts and mental relations between them,
we are able to orient ourselves in the labyrinth of sense impressions.
These notions and relations, although free statements of our thoughts,
appear to us as stronger and more unalterable than the individual sense
experience itself, the character of which as anything other than the
result of an illusion or hallucination is never completely guaranteed.
On the other hand, these concepts and relations, and indeed the set-
ting of real objects and, generally speaking, the existence of “the real
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world,” have justification only in so far as they are connected with
sense impressions between which they form a mental connection.

The very fact that the totality of our sense experiences is such that
by means of thinking (operations with concepts, and the creation and
use of definite functional relations between them, and the coordination
of sense experiences to these concepts) it can be put in order, this fact is
one which leaves us in awe, but which we shall never understand. One
may say “the eternal mystery of the world is its comprehensibility.” It is
one of the great realizations of Immanuel Kant that the setting up of a
real external world would be senseless without this comprehensibility.

In speaking here concerning “comprehensibility,” the expression is
used in its most modest sense. It implies: the production of some sort
of order among sense impressions, this order being produced by the
creation of general concepts, relations between these concepts, and by
relations between the concepts and sense experience, these relations
being determined in any possible manner. It is in this sense that the
world of our sense experiences is comprehensible. The fact that it is
comprehensible is a miracle.

In my opinion, nothing can be said concerning the manner in
which the concepts are to be made and connected, and how we are
to coordinate them to the experiences. In guiding us in the creation
of such an order of sense experiences, success in the result is alone the
determining factor. All that is necessary is the statement of a set of
rules, since without such rules the acquisition of knowledge in the
desired sense would be impossible. One may compare these rules with
the rules of a game in which, while the rules themselves are arbitrary,
it is their rigidity alone which makes the game possible. However, the
fixation will never be final. It will have validity only for a special field
of application (i.e. there are no final categories in the sense of Kant).

The connection of the elementary concepts of everyday thinking
with complexes of sense experiences can only be comprehended intu-
itively and it is unadaptable to scientifically logical fixation. The total-
ity of these connections—none of which is expressible in notional
terms—is the only thing which differentiates the great building which
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is science from a logical but empty scheme of concepts. By means of
these connections, the purely notional theorems of science become
statements about complexes of sense experiences.

We shall call “primary concepts” such concepts as are directly and
intuitively connected with typical complexes of sense experiences. All
other notions are—from the physical point of view—possessed of mean-
ing, only in so far as they are connected, by theorems, with the primary
notions. These theorems are partially definitions of the concepts (and
of the statements derived logically from them) and partially theorems
not derivable from the definitions, which express at least indirect rela-
tions between the “primary concepts,” and in this way between sense
experiences. Theorems of the latter kind are “statements about reality”
or laws of nature, i.e. theorems which have to show their usefulness
when applied to sense experiences comprehended by primary concepts.
The question as to which of the theorems shall be considered as defi-
nitions and which as natural laws will depend largely upon the chosen
representation. It really becomes absolutely necessary, to make this dif-
ferentiation only when one examines the degree to which the whole sys-
tem of concepts considered is not empty from the physical point of view.

STRATIFICATION OF THE SCIENTIFIC SYSTEM

The aim of science is, on the one hand, a comprehension, as complete as
possible, of the connection between the sense experiences in their total-
ity, and, on the other hand, the accomplishment of this aim by the use
of a minimum of primary concepts and relations. (Seeking, as far as possi-
ble, logical unity in the world picture, i.e. paucity in logical elements.)

Science concerns the totality of the primary concepts, i.e. concepts
directly connected with sense experiences, and theorems connecting
them. In its first stage of development, science does not contain anything
else. Our everyday thinking is satisfied on the whole with this level. Such
a state of affairs cannot, however, satisfy a spirit which is really scientif-
ically minded; because, the totality of concepts and relations obtained in
this manner is utterly lacking in logical unity. In order to supplement
this deficiency, one invents a system poorer in concepts and relations, a
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system retaining the primary concepts and relations of the “first layer” as
logically derived concepts and relations. This new “secondary system”
pays for its higher logical unity by having, as its own elementary con-
cepts (concepts of the second layer), only those which are no longer
directly connected with complexes of sense experiences. Further striving
for logical unity brings us to a tertiary system, still poorer in concepts
and relations, for the deduction of the concepts and relations of the sec-
ondary (and so indirectly of the primary) layer. Thus the story goes on
until we have arrived at a system of the greatest conceivable unity, and
of the greatest poverty of concepts of the logical foundations, which are
still compatible with the observation made by our senses. We do not
know whether or not this ambition will ever result in a definite system.
If one is asked for his opinion, he is inclined to answer no. While
wrestling with the problems, however, one will never give up the hope
that this greatest of all aims can really be attained to a very high degree.

An adherent to the theory of abstraction or induction might call
our layers “degrees of abstraction”; but, I do not consider it justifiable
to veil the logical independence of the concept from the sense expe-
riences. The relation is not analogous to that of soup to beef but rather
of wardrobe number to overcoat.

The layers are furthermore not clearly separated. It is not even
absolutely clear which concepts belong to the primary layer. As a mat-
ter of fact, we are dealing with freely formed concepts, which, with a
certainty sufficient for practical use, are intuitively connected with
complexes of sense experiences in such a manner that, in any given
case of experience, there is no uncertainty as to the applicability or
non-applicability of the statement. The essential thing is the aim to
represent the multitude of concepts and theorems, close to experience,
as theorems, logically deduced and belonging to a basis, as narrow as
possible, of fundamental concepts and fundamental relations which
themselves can be chosen freely (axioms). The liberty of choice, how-
ever, is of a special kind; it is not in any way similar to the liberty of
a writer of fiction. Rather, it is similar to that of a man engaged in
solving a well designed word puzzle. He may, it is true, propose any
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word as the solution; but, there is only one word which really solves
the puzzle in all its forms. It is an outcome of faith that nature—as
she is perceptible to our five senses—takes the character of such a well
formulated puzzle. The successes reaped up to now by science do, it
is true, give a certain encouragement for this faith.

The multitude of layers discussed above corresponds to the several
stages of progress which have resulted from the struggle for unity in the
course of development. As regards the final aim, intermediary layers are
only of temporary nature. They must eventually disappear as irrelevant.
We have to deal, however, with the science of today, in which these
strata represent problematic partial successes which support one another
but which also threaten one another, because today’s systems of con-
cepts contain deep seated incongruities which we shall meet later on.

It will be the aim of the following lines to demonstrate what paths
the constructive human mind has entered, in order to arrive at a basis
of physics which is logically as uniform as possible.

2. MECHANICS AND THE ATTEMPTS TO BASE
ALL PHYSICS UPON IT

An important property of our sense experiences, and, more generally,
of all of our experience, is its time-like order. This kind of order leads
to the mental conception of a subjective time, an ordinating scheme
for our experience. The subjective time leads then through the con-
cept of the bodily object and of space, to the concept of objective
time, as we shall see later on.

Ahead of the notion of objective time there is, however, the con-
cept of space; and, ahead of the latter we find the concept of the bod-
ily object. The latter is directly connected with complexes of sense
experiences. It has been pointed out that one property which is char-
acteristic of the notion “bodily object” is the property which provides
that we coordinate to it an existence, independent of (subjective) time,
and independent of the fact that it is perceived by our senses. We do
this in spite of the fact that we perceive temporal alterations in it.
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Poincaré has justly emphasized the fact that we distinguish two kinds
of alterations of the bodily object, “changes of state” and “changes of
position.” The latter, he remarked, are alterations which we can reverse
by arbitrary motions of our bodies.

That there are bodily objects to which we have to ascribe, within a
certain sphere of perception, no alteration of state, but only alterations
of position, is a fact of fundamental importance for the formation of
the concept of space (in a certain degree even for the justification of
the notion of the bodily object itself ). Let us call such an object “prac-
tically rigid.”

If, as the object of our perception, we consider simultaneously (i.e.
as a single unit) two practically rigid bodies, then there exist for this
ensemble such alterations as can not possibly be considered as changes
of position of the whole, notwithstanding the fact that this is the case
for each one of the two constituents. This leads to the notion of
“change of relative position” of the two objects; and, in this way, also
to the notion of “relative position” of the two objects. It is found
moreover that among the relative positions, there is one of a specific
kind which we designate as “Contact.”* Permanent contact of two
bodies in three or more “points” means that they are united as a quasi
rigid compound body. It is permissible to say that the second body
forms then a (quasi rigid) continuation on the first body and may, in
its turn, be continued quasi rigidly. The possibility of the quasi rigid
continuation of a body is unlimited. The real essence of the conceiv-
able quasi rigid continuation of a body is the infinite “space” deter-
mined by it.

In my opinion, the fact that every bodily object situated in any arbi-
trary manner can be put into contact with the quasi rigid continuation
of a predetermined and chosen body (body of relation), this fact is
the empirical basis of our conception of space. In pre-scientific think-
ing, the solid earth’s crust plays the role of and its continuation. TheB0

B0

B0
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very name geometry indicates that the concept of space is psycholog-
ically connected with the earth as an assigned body.

The bold notion of “space” which preceded all scientific geome-
try transformed our mental concept of the relations of positions of
bodily objects into the notion of the position of these bodily objects
in “space.” This, of itself, represents a great formal simplification.
Through this concept of space one reaches, moreover, an attitude in
which any description of position is admittedly a description of con-
tact; the statement that a point of a bodily object is located at a point
P of space means that the object touches the point P of the standard
body of reference (supposed appropriately continued) at the point
considered.

In the geometry of the Greeks, space plays only a qualitative role,
since the position of bodies in relation to space is considered as given,
it is true, but is not described by means of numbers. Descartes was
the first to introduce this method. In his language, the whole content
of Euclidian geometry can axiomatically be founded upon the follow-
ing statements: (1) Two specified points of a rigid body determine a
distance. (2) We may coordinate triplets of numbers to
points of space in such a manner that for every distance 
under consideration, the coordinates of whose end points are 

the expression

is independent of the position of the body, and of the positions of any
and all other bodies.

The (positive) number S means the length of the stretch, or the
distance between the two points and of space (which are coin-
cident with the points and of the stretch).

The formulation is chosen, intentionally, in such a way that it
expresses clearly, not only the logical and axiomatic, but also the
empirical content of Euclidian geometry. The purely logical
(axiomatic) representation of Euclidian geometry has, it is true, the
advantage of greater simplicity and clarity. It pays for this, however,
by renouncing representation of the connection between the notional

P–P ¿
P–P ¿

S2 � 1X –1 � X ¿1 22 � 1X –2 � X ¿2 22 � 1X –3 � X ¿3 22
X ¿3 ; X –1 , X –2 , X –3 ,

X ¿1, X ¿2,
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construction and the sense experience upon which connection, alone,
the significance of geometry for physics rests. The fatal error that the
necessity of thinking, preceding all experience, was at the basis of
Euclidian geometry and the concept of space belonging to it, this fatal
error arose from the fact that the empirical basis, on which the
axiomatic construction of Euclidian geometry rests, had fallen into
oblivion.

In so far as one can speak of the existence of rigid bodies in nature,
Euclidian geometry is a physical science, the usefulness of which must
be shown by application to sense experiences. It relates to the totality
of laws which must hold for the relative positions of rigid bodies inde-
pendently of time. As one may see, the physical notion of space also,
as originally used in physics, is tied to the existence of rigid bodies.

From the physicist’s point of view, the central importance of
Euclidian geometry rests in the fact that its laws are independent of
the specific nature of the bodies whose relative positions it discusses.
Its formal simplicity is characterized by the properties of homogene-
ity and isotropy (and the existence of similar entities).

The concept of space is, it is true, useful, but not indispensable
for geometry proper, i.e. for the formulation of rules about the rela-
tive positions of rigid bodies. In opposition to this, the concept of
objective time, without which the formulation of the fundamentals of
classical mechanics is impossible, is linked with the concept of the spe-
cial continuum.

The introduction of objective time involves two statements which
are independent of each other.

(1) The introduction of the objective local time by connecting the
temporal sequence of experiences with the indications of a “clock,” i.e.
of a closed system with periodical occurrence.

(2) The introduction of the notion of objective time for the hap-
penings in the whole space, by which notion alone the idea of local
time is enlarged to the idea of time in physics.

Note concerning (1). As I see it, it does not mean a “petitio prin-
cipii” if one puts the concept of periodical occurrence ahead of the
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concept of time, while one is concerned with the clarification of the
origin and of the empirical content of the concept of time. Such a
conception corresponds exactly to the precedence of the concept of
the rigid (or quasi rigid) body in the interpretation of the concept of
space.

Further discussion of (2). The illusion which prevailed prior to the
enunciation of the theory of relativity—that, from the point of view
of experience the meaning of simultaneity in relation to happenings
distant in space and consequently that the meaning of time in physics
is a priori clear—this illusion had its origin in the fact that in our
everyday experience, we can neglect the time of propagation of light.
We are accustomed on this account to fail to differentiate between
“simultaneously seen” and “simultaneously happening”; and, as a result
the difference between time and local time fades away.

The lack of definiteness which, from the point of view of empir-
ical importance, adheres to the notion of time in classical mechanics
was veiled by the axiomatic representation of space and time as things
given independently of our senses. Such a use of notions—independent
of the empirical basis, to which they owe their existence—does not
necessarily damage science. One may however easily be led into the
error of believing that these notions, whose origin is forgotten, are nec-
essary and unalterable accompaniments to our thinking, and this error
may constitute a serious danger to the progress of science.

It was fortunate for the development of mechanics and hence also
for the development of physics in general, that the lack of definiteness
in the concept of objective time remained obscured from the earlier
philosophers as regards its empirical interpretation. Full of confidence
in the real meaning of the space-time construction they developed the
foundations of mechanics which we shall characterize, schematically,
as follows:

(a) Concept of a material point: a bodily object which—as regards
its position and motion—can be described with sufficient exactness as
a point with coordinates Description of its motion (in rela-
tion to the “space” by giving as functions of the time.X1, X2, X3,B02

X1, X2, X3.
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(b) Law of inertia: the disappearance of the components of accel-
eration for the material point which is sufficiently far away from all
other points.

(c) Law of motion (for the material point): 

(d ) Laws of force (actions and reactions between material points).
In this (b) is nothing more than an important special case of (c).

A real theory exists only when the laws of force are given. The forces
must in the first place only obey the law of equality of action and
reaction in order that a system of points—permanently connected to
each other—may behave like one material point.

These fundamental laws, together with Newton’s law for gravita-
tional force, form the basis of the mechanics of celestial bodies. In this
mechanics of Newton, and in contrast to the above conceptions of space
derived from rigid bodies, the space enters in a form which contains
a new idea; it is not for every that validity is required (for a given
law of force) by (b) and (c), but only for a in the appropriate
condition of motion (inertial system). On account of this fact, the coor-
dinate space acquired an independent physical property which is not
contained in the purely geometrical notion of space, a circumstance
which gave Newton considerable food for thought (pail-experiment)*

Classical mechanics is only a general scheme; it becomes a theory
only by explicit indication of the force laws (d ) as was done so very suc-
cessfully by Newton for celestial mechanics. From the point of view of
the aim of the greatest logical simplicity of the foundations, this theo-
retical method is deficient in so far as the laws of force cannot be obtained
by logical and formal considerations, so that their choice is a priori to a
large extent arbitrary. Also Newton’s gravitation law of force is distin-
guished from other conceivable laws of force exclusively by its success.

In spite of the fact that, today, we know positively that classical
mechanics fails as a foundation dominating all physics, it still occupies

B0

B0
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acceleration.
Force � mass �

411

A STUBBORNLY PERSISTENT ILLUSION

*This defect of the theory could only be eliminated by such a formulation of mechanics as would command validity for all This
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theory of relativity, lies in the fact that there is no reason given by mechanics itself for the equality of the gravitational and inertial mass
of the material point.
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the center of all of our thinking in physics. The reason for this lies in
the fact that, regardless of important progress reached since the time
of Newton, we have not yet arrived at a new foundation of physics
concerning which we may be certain that the whole complexity of
investigated phenomena, and of partial theoretical systems of a suc-
cessful kind, could be deduced logically from it. In the following lines
I shall try to describe briefly how the matter stands.

First we try to get clearly in our minds how far the system of clas-
sical mechanics has shown itself adequate to serve as a basis for the whole
of physics. Since we are dealing here only with the foundations of physics
and with its development, we need not concern ourselves with the purely
formal progresses of mechanics (equation of Lagrange, canonical equa-
tions, etc.). One remark, however, appears indispensable. The notion
“material point” is fundamental for mechanics. If now we seek the
mechanics of a bodily object which itself can not be treated as a mate-
rial point—and strictly speaking every object “perceptible to our senses”
is of this category—then the question arises: How shall we imagine the
object to be built up out of material points, and what forces must we
assume as acting between them? The formulation of this question is indis-
pensable, if mechanics is to pretend to describe the object completely.

It is natural to the tendency of mechanics to assume these mate-
rial points, and the laws of forces acting between them, as invariable,
since time alterations would lie outside of the scope of mechanical
explanation. From this we can see that classical mechanics must lead
us to an atomistic construction of matter. We now realize, with spe-
cial clarity, how much in error are those theorists who believe that the-
ory comes inductively from experience. Even the great Newton could
not free himself from this error (“Hypotheses non fingo”).*

In order to save itself from becoming hopelessly lost in this line
of thought (atomistic), science proceeded first in the following man-
ner. The mechanics of a system is determined if its potential energy
is given as a function of its configuration. Now, if the acting forces

412

SELECTIONS FROM OUT OF MY LATER YEARS

*“I make no hypotheses.”



are of such a kind as to guarantee maintenance of certain qualities of
order of the system’s configuration, then the configuration may be
described with sufficient accuracy by a relatively small number of con-
figuration variables the potential energy is considered only insofar
as it is dependent upon these variables (for instance, description of the
configuration of a practically rigid body by six variables).

A second method of application of mechanics, which avoids the
consideration of a subdivision of matter down to “real” material
points, is the mechanics of so-called continuous media. This mechan-
ics is characterized by the fiction that the density of matter and speed
of matter is dependent in a continuous manner upon coordinates and
time, and that the part of the interactions not explicitly given can be
considered as surface forces (pressure forces) which again are contin-
uous functions of location. Herein we find the hydrodynamic theory,
and the theory of elasticity of solid bodies. These theories avoid the
explicit introduction of material points by fictions which, in the light
of the foundation of classical mechanics, can only have an approxi-
mate significance.

In addition to their great practical significance, these categories of
science have—by enlargement of the mathematical world of ideas—
created those formal auxiliary instruments (partial differential equa-
tions) which have been necessary for the subsequent attempts at for-
mulating the total scheme of physics in a manner which is new as
compared with that of Newton.

These two modes of application of mechanics belong to the so-
called “phenomenological” physics. It is characteristic of this kind of
physics that it makes as much use as possible of concepts which are close
to experience but which, for this reason, have to give up, to a large
degree, unity in the foundations. Heat, electricity and light are described
by special variables of state and constants of matter other than the
mechanical state, and to determine all of these variables in their relative
dependence was a rather empirical task. Many contemporaries of
Maxwell saw in such a manner of presentation the ultimate aim of
physics, which they thought could be obtained purely inductively from

qr;
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experience on account of the relative closeness of the concepts used to
the experience. From the point of view of theories of knowledge St. Mill
and E. Mach took their stand approximately on this ground.

According to my belief, the greatest achievement of Newton’s
mechanics lies in the fact that its consistent application has led beyond
this phenomenological representation, particularly in the field of heat
phenomena. This occurred in the kinetic theory of gases and, in a gen-
eral way, in statistical mechanics. The former connected the equation
of state of the ideal gases, viscosity, diffusion and heat conductivity of
gases and radiometric phenomena of gases, and gave the logical con-
nection of phenomena which, from the point of view of direct experi-
ence, had nothing whatever to do with one another. The latter gave a
mechanical interpretation of the thermodynamic ideas and laws as well
as the discovery of the limit of applicability of the notions and laws to
the classical theory of heat. This kinetic theory which surpassed, by far,
the phenomenological physics as regards the logical unity of its foun-
dations, produced moreover definite values for the true magnitudes of
atoms and molecules which resulted from several independent meth-
ods and were thus placed beyond the realm of reasonable doubt. These
decisive progresses were paid for by the coordination of atomistic enti-
ties to the material points, the constructively speculative character of
which entities being obvious. Nobody could hope ever to “perceive
directly” an atom. Laws concerning variables connected more directly
with experimental facts (for example: temperature, pressure, speed)
were deduced from the fundamental ideas by means of complicated cal-
culations. In this manner physics (at least part of it), originally more
phenomenologically constructed, was reduced, by being founded upon
Newton’s mechanics for atoms and molecules, to a basis further
removed from direct experiment, but more uniform in character.

3. THE FIELD CONCEPT

In explaining optical and electrical phenomena Newton’s mechanics has
been far less successful than it had been in the fields cited above. It is
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true that Newton tried to reduce light to the motion of material points
in his corpuscular theory of light. Later on, however, as the phenom-
ena of polarization, diffraction and interference of light forced upon his
theory more and more unnatural modifications, Huyghens’ undulatory
theory of light, prevailed. Probably this theory owes its origin essentially
to the phenomena of crystallographic optics and to the theory of sound,
which was then already elaborated to a certain degree. It must be admit-
ted that Huyghens’ theory also was based in the first instance upon clas-
sical mechanics; but, the all-penetrating ether had to be assumed as the
carrier of the waves and the structure of the ether, formed from mate-
rial points, could not be explained by any known phenomenon. One
could never get a clear picture of the interior forces governing the ether,
nor of the forces acting between the ether and the “ponderable” matter.
The foundations of this theory remained, therefore, eternally in the
dark. The true basis was a partial differential equation, the reduction of
which to mechanical elements remained always problematic.

For the theoretical conception of electric and magnetic phenom-
ena one introduced, again, masses of a special kind, and between these
masses one assumed the existence of forces acting at a distance, simi-
lar to Newton’s gravitational forces. This special kind of matter, how-
ever, appeared to be lacking in the fundamental property of inertia;
and, the forces acting between these masses and the ponderable mat-
ter remained obscure. To these difficulties there had to be added the
polar character of these kinds of matter which did not fit into the
scheme of classical mechanics. The basis of the theory became still more
unsatisfactory when electro-dynamic phenomena became known,
notwithstanding the fact that these phenomena brought the physicist
to the explanation of magnetic phenomena through electrodynamic
phenomena and, in this way, made the assumption of magnetic masses
superfluous. This progress had, indeed, to be paid for by increasing
the complexity of the forces of interaction which had to be assumed
as existing between electrical masses in motion.

The escape from this unsatisfactory situation by the electric field
theory of Faraday and Maxwell represents probably the most profound
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transformation which has been experienced by the foundations of
physics since Newton’s time. Again, it has been a step in the direction
of constructive speculation which has increased the distance between
the foundation of the theory and what can be experienced by means
of our five senses. The existence of the field manifests itself, indeed,
only when electrically charged bodies are introduced into it. The dif-
ferential equations of Maxwell connect the special and temporal dif-
ferential coefficients of the electric and magnetic fields. The electric
masses are nothing more than places of non-disappearing divergency
of the electric field. Light waves appear as undulatory electromagnetic
field processes in space.

To be sure, Maxwell still tried to interpret his field theory mechan-
ically by means of mechanical ether models. But these attempts
receded gradually to the background following the representation—
purged of any unnecessary additions—by Heinrich Hertz, so that, in
this theory the field finally took the fundamental position which had
been occupied in Newton’s mechanics by the material points. At first,
however, this applies only for electromagnetic fields in empty space.

In its initial stage the theory was yet quite unsatisfactory for the
interior of matter, because there, two electric vectors had to be intro-
duced, which were connected by relations dependent on the nature of
the medium, these relations being inaccessible to any theoretical analy-
sis. An analogous situation arose in connection with the magnetic field,
as well as in the relation between electric current density and the field.

Here H. A. Lorentz found an escape which showed, at the same
time, the way to an electrodynamic theory of bodies in motion, a the-
ory which was more or less free of arbitrary assumption. His theory
was built on the following fundamental hypothesis:

Everywhere (including the interior of ponderable bodies) the seat
of the field is the empty space. The participation of matter in electro-
magnetic phenomena has its origin only in the fact that the elemen-
tary particles of matter carry unalterable electric charges, and, on this
account are subject on the one hand to the actions of ponderomotive
forces and on the other hand possess the property of generating a field.
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The elementary particles obey Newton’s law of motion for the mate-
rial point.

This is the basis on which H. A. Lorentz obtained his synthesis
of Newton’s mechanics and Maxwell’s field theory. The weakness of
this theory lies in the fact that it tried to determine the phenomena
by a combination of partial differential equations (Maxwell’s field
equations for empty space) and total differential equations (equations
of motion of points), which procedure was obviously unnatural. The
unsatisfactory part of the theory showed up externally by the neces-
sity of assuming finite dimensions for the particles in order to prevent
the electromagnetic field existing at their surfaces from becoming infi-
nitely great. The theory failed moreover to give any explanation con-
cerning the tremendous forces which hold the electric charges on the
individual particles. H. A. Lorentz accepted these weaknesses of his
theory, which were well known to him, in order to explain the phe-
nomena correctly at least as regards their general lines.

Furthermore, there was one consideration which reached beyond
the frame of Lorentz’s theory. In the environment of an electrically
charged body there is a magnetic field which furnishes an (apparent)
contribution to its inertia. Should it not be possible to explain the
total inertia of the particles electromagnetically? It is clear that this
problem could be worked out satisfactorily only if the particles could
be interpreted as regular solutions of the electromagnetic partial dif-
ferential equations. The Maxwell equations in their original form do
not, however, allow such a description of particles, because their cor-
responding solutions contain a singularity. Theoretical physicists have
tried for a long time, therefore, to reach the goal by a modification of
Maxwell’s equations. These attempts have, however, not been crowned
with success. Thus it happened that the goal of erecting a pure elec-
tromagnetic field theory of matter remained unattained for the time
being, although in principle no objection could be raised against the
possibility of reaching such a goal. The thing which deterred one in
any further attempt in this direction was the lack of any systematic
method leading to the solution. What appears certain to me, however,
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is that, in the foundations of any consistent field theory, there shall
not be, in addition to the concept of field, any concept concerning
particles. The whole theory must be based solely on partial differen-
tial equations and their singularity-free solutions.

4. THE THEORY OF RELATIVITY

There is no inductive method which could lead to the fundamental
concepts of physics. Failure to understand this fact constituted the
basic philosophical error of so many investigators of the nineteenth
century. It was probably the reason why the molecular theory, and
Maxwell’s theory were able to establish themselves only at a relatively
late date. Logical thinking is necessarily deductive; it is based upon
hypothetical concepts and axioms. How can we hope to choose the
latter in such a manner as to justify us in expecting success as a
consequence?

The most satisfactory situation is evidently to be found in cases
where the new fundamental hypotheses are suggested by the world of
experience itself. The hypothesis of the non-existence of perpetual
motion as a basis for thermodynamics affords such an example of a fun-
damental hypothesis suggested by experience; the same thing holds for
the principle of inertia of Galileo. In the same category, moreover, we
find the fundamental hypotheses of the theory of relativity, which the-
ory has led to an unexpected expansion and broadening of the field the-
ory, and to the superseding of the foundations of classical mechanics.

The successes of the Maxwell-Lorentz theory have given great con-
fidence in the validity of the electromagnetic equations for empty
space and hence, in particular, to the statement that light travels “in
space” with a certain constant speed c. Is this law of the invariability
of light velocity in relation to any desired inertial system valid? If it
were not, then one specific inertial system or more accurately, one spe-
cific state of motion (of a body of reference), would be distinguished
from all others. In opposition to this idea, however, stand all the
mechanical and electromagnetic-optical facts of our experience.
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For these reasons it was necessary to raise to the degree of a prin-
ciple, the validity of the law of constancy of light velocity for all iner-
tial systems. From this, it follows that the special coordinates 
and the time must be transformed according to the “Lorentz-trans-
formation” which is characterized by invariance of the expression

(if the unit of time is chosen in such a manner that the speed of fight

By this procedure time lost its absolute character, and was included
with the “special” coordinates as of algebraically (nearly) similar char-
acter. The absolute character of time and particularly of simultaneity
were destroyed, and the four dimensional description became intro-
duced as the only adequate one.

In order to account, also, for the equivalence of all inertial systems
with regard to all the phenomena of nature, it is necessary to postulate
invariance of all systems of physical equations which express general
laws, with regard to the Lorentzian transformation. The elaboration of
this requirement forms the content of the special theory of relativity.

This theory is compatible with the equations of Maxwell; but, it
is incompatible with the basis of classical mechanics. It is true that the
equations of motion of the material point can be modified (and with
them the expressions for momentum and kinetic energy of the mate-
rial point) in such a manner as to satisfy the theory; but, the concept of
the force of interaction, and with it the concept of potential energy of a
system, lose their basis, because these concepts rest upon the idea of
absolute instantaneousness. The field, as determined by differential
equations, takes the place of the force.

Since the foregoing theory allows interaction only by fields, it
requires a field theory of gravitation. Indeed, it is not difficult to for-
mulate such a theory in which, as in Newton’s theory, the gravitational
fields can be reduced to a scalar which is the solution of a partial differ-
ential equation. However, the experimental facts expressed in Newton’s
theory of gravitation lead in another direction, that of the general the-
ory of relativity.

c � 12.
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Classical mechanics contains one point which is unsatisfactory in
that, in the fundamentals, the same mass constant is met twice over
in two different roles, namely as “inertial mass” in the law of motion,
and as “gravitational mass” in the law of gravitation. As a result of
this, the acceleration of a body in a pure gravitational field is inde-
pendent of its material; or, in a coordinate system of uniform acceler-
ation (accelerated in relation to an “inertial system”) the motions take
place as they would in a homogeneous gravitational field (in relation
to a “motionless” system of coordinates). If one assumes that the equiv-
alence of these two cases is complete, then one attains an adaptation
of our theoretical thinking to the fact that the gravitational and iner-
tial masses are identical.

From this it follows that there is no longer any reason for favoring,
as a fundamental principle, the “inertial systems”; and, we must admit
as equivalent in their own right, also non-linear transformations of the
coordinates If we make such a transformation of a sys-
tem of coordinates of the special theory of relativity, then the metric

goes over to a general (Riemannian) metric of Bane
(Summed over and )

where the symmetrical in and , are certain functions of 
which describe both the metric property, and the gravitational field in
relation to the new system of coordinates.

The foregoing improvement in the interpretation of the mechani-
cal basis must, however, be paid for in that—as becomes evident on
closer scrutiny—the new coordinates could no longer be interpreted, as
results of measurements by rigid bodies and clocks, as they could in the
original system (an inertial system with vanishing gravitational field).

The passage to the general theory of relativity is realized by the
assumption that such a representation of the field properties of space
already mentioned, by functions (that is to say by a Riemann met-
ric), is also justified in the general case in which there is no system of
coordinates in relation to which the metric takes the simple quasi-
Euclidian form of the special theory of relativity.
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Now the coordinates, by themselves, no longer express metric rela-
tions, but only the “neighborliness” of the things described, whose
coordinates differ but little from one another. All transformations of
the coordinates have to be admitted so long as these transformations
are free from singularities. Only such equations as are covariant in rela-
tion to arbitrary transformations in this sense have meaning as expres-
sions of general laws of nature (postulate of general covariancy).

The first aim of the general theory of relativity was a prelimi-
nary statement which, by giving up the requirement of constituting
a closed thing in itself, could be connected in as simple a manner
as possible with the “facts directly observed.” Newton’s gravitational
theory gave an example, by restricting itself to the pure mechanics
of gravitation. This preliminary statement may be characterized as
follows:

(1) The concept of the material point and of its mass is retained.
A law of motion is given for it, this law of motion being the transla-
tion of the law of inertia into the language of the general theory of
relativity. This law is a system of total differential equations, the sys-
tem characteristic of the geodetic line.

(2) In place of Newton’s law of interaction by gravitation, we shall
find the system of the simplest generally covariant differential equa-
tions which can be set up for the It is formed by equating
to zero the once contracted Riemannian curvature tensor 

This formulation permits the treatment of the problem of the
planets. More accurately speaking, it allows the treatment of the prob-
lem of motion of material points of practically negligible mass in the
gravitational field produced by a material point which itself is sup-
posed to have no motion (central symmetry). It does not take into
account the reaction of the “moved” material points on the gravita-
tional field, nor does it consider how the central mass produces this
gravitational field.

Analogy with classical mechanics shows that the following is a way
to complete the theory. One sets up as field equation

Rik � 1
2 gik R � �Tik

1Rmn � 02.
gmn-tensor.
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where R represents the scalar of Riemannian curvature, the energy
tensor of the matter in a phenomenological representation. The left
side of the equation is chosen in such a manner that its divergence
disappears identically. The resulting disappearance of the divergence of
the right side produces the “equations of motion” of matter, in the
form of partial differential equations for the case where introduces,
for the description of the matter, only four further functions inde-
pendent of each other (for instance, density, pressure, and velocity
components, where there is between the latter an identity, and between
pressure and density an equation of condition).

By this formulation one reduces the whole mechanics of gravita-
tion to the solution of a single system of covariant partial differential
equations. The theory avoids all internal discrepancies which we have
charged against the basis of classical mechanics. It is sufficient—as far
as we know—for the representation of the observed facts of celestial
mechanics. But, it is similar to a building, one wing of which is made
of fine marble (left part of the equation), but the other wing of which
is built of low grade wood (right side of equation). The phenomeno-
logical representation of matter is, in fact, only a crude substitute for
a representation which would correspond to all known properties of
matter.

There is no difficulty in connecting Maxwell’s theory of the elec-
tromagnetic field with the theory of the gravitational field so long as
one restricts himself to space, free of ponderable matter and free of
electric density. All that is necessary is to put on the right hand side
of the above equation for the energy tensor of the electromagnetic
field in empty space and to associate with the so modified system of
equations the Maxwell field equation for empty space, written in gen-
eral covariant form. Under these conditions there will exist, between
all these equations, a sufficient number of the differential identities
to guarantee their consistency. We may add that this necessary for-
mal property of the total system of equations leaves arbitrary the
choice of the sign of the member a fact which was later shown
to be important.
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The desire to have, for the foundations of the theory, the greatest
possible unity has resulted in several attempts to include the gravita-
tional field and the electromagnetic field in one formal but homoge-
neous picture. Here we must mention particularly the five-dimensional
theory of Kaluza and Klein. Having considered this possibility very
carefully I feel that it is more desirable to accept the lack of internal
uniformity of the original theory, because I do not consider that the
totality of the hypothetical basis of the five-dimensional theory con-
tains less of an arbitrary nature than does the original theory. The same
statement may be made for the projective variety of the theory, which
has been elaborated with great care, in particular, by v. Dantzig and
by Pauli.

The foregoing considerations concern, exclusively, the theory of
the field, free of matter. How are we to proceed from this point in
order to obtain a complete theory of atomically constructed matter?
In such a theory, singularities must certainly be excluded, since with-
out such exclusion the differential equations do not completely deter-
mine the total field. Here, in the field theory of general relativity, we
meet the same problem of a theoretical field-representation of matter
as was met originally in connection with the pure Maxwell theory.

Here again the attempt to construct particles out of the field the-
ory, leads apparently to singularities. Here also the endeavor has been
made to overcome this defect by the introduction of new field vari-
ables and by elaborating and extending the system of field equations.
Recently, however, I discovered, in collaboration with Dr. Rosen, that
the above mentioned simplest combination of the field equations of
gravitation and electricity produces centrally symmetrical solutions
which can be represented as free of singularity (the well known cen-
trally symmetrical solutions of Schwarzschild for the pure gravitational
field, and those of Reissner for the electric field with consideration of
its gravitational action). We shall refer to this shortly in the paragraph
next but one. In this way it seems possible to get for matter and its
interactions a pure field theory free of additional hypotheses, one
moreover whose test by submission to facts of experience does not
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result in difficulties other than purely mathematical ones, which dif-
ficulties, however, are very serious.

5. QUANTUM THEORY AND THE
FUNDAMENTALS OF PHYSICS

The theoretical physicists of our generation are expecting the erection
of a new theoretical basis for physics which would make use of fun-
damental concepts greatly different from those of the field theory con-
sidered up to now. The reason is that it has been found necessary to
use—for the mathematical representation of the so-called quantum
phenomena—new sorts of methods of consideration.

While the failure of classical mechanics, as revealed by the theory
of relativity, is connected with the finite speed of light (its avoidance
of being it was discovered at the beginning of our century that
there were other kinds of inconsistencies between deductions from
mechanics and experimental facts, which inconsistencies are connected
with the finite magnitude (the avoidance of being zero) of Planck’s
constant h. In particular, while molecular mechanics requires that both
heat content and (monochromatic) radiation density of solid bodies
should decrease in proportion to the decreasing absolute temperature,
experience has shown that they decrease much more rapidly than the
absolute temperature. For a theoretical explanation of this behavior it
was necessary to assume that the energy of a mechanical system can-
not assume any sort of value, but only certain discrete values whose
mathematical expressions were always dependent upon Planck’s con-
stant h. Moreover, this conception was essential for the theory of the
atom (Bohr’s theory). For the transitions of these states into one
another—with or without emission or absorption of radiation—no
causal laws could be given, but only statistical ones; and, a similar con-
clusion holds for the radioactive decomposition of atoms, which
decomposition was carefully investigated about the same time. For
more than two decades physicists tried vainly to find a uniform inter-
pretation of this “quantum character” of systems and phenomena.

q 2,
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Such an attempt was successful about ten years ago, through the
agency of two entirely different theoretical methods of attack. We owe
one of these to Heisenberg and Dirac, and the other to de Broglie and
Schrödinger. The mathematical equivalence of the two methods was
soon recognized by Schrödinger. I shall try here to sketch the line of
thought of de Broglie and Schrödinger, which lies closer to the physi-
cist’s method of thinking, and shall accompany the description with
certain general considerations.

The question is first: How can one assign a discrete succession of
energy value to a system specified in the sense of classical mechanics
(the energy function is a given function of the coordinates and the
corresponding momenta Planck’s constant h relates the frequency

to the energy values It is therefore sufficient to give to the
system a succession of discrete frequency values. This reminds us of the
fact that in acoustics, a series of discrete frequency values is coordi-
nated to a linear partial differential equation (if boundary values are
given) namely the sinusoidal periodic solutions. In corresponding
manner, Schrödinger set himself the task of coordinating a partial dif-
ferential equation for a scalar function to the given energy function

where the and the time t are independent variables. In this
he succeeded (for a complex function in such a manner that the
theoretical values of the energy as required by the statistical the-
ory, actually resulted in a satisfactory manner from the periodic solu-
tion of the equation.

To be sure, it did not happen to be possible to associate a defi-
nite movement, in the sense of mechanics of material points, with a
definite solution of the Schrödinger equation. This means that
the function does not determine, at any rate exactly, the story of
the as functions of the time t. According to Born, however, an inter-
pretation of the physical meaning of the functions was shown to be
possible in the following manner: (the square of the absolute value
of the complex function is the probability density at the point
under consideration in the configuration-space of the at the time
t. It is therefore possible to characterize the content of the Schrödinger
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equation in a manner, easy to be understood, but not quite accurate,
as follows: it determines how the probability density of a statistical
ensemble of systems varies in the configuration-space with the time.
Briefly: the Schrödinger equation determines the alteration of the
function of the with the time.

It must be mentioned that the result of this theory contains—as
limiting values—the result of the particle mechanics if the wave-length
encountered during the solution of the Schrödinger problem is every-
where so small that the potential energy varies by a practically infi-
nitely small amount for a change of one wavelength in the configura-
tion-space. Under these conditions the following can in fact be shown:
We choose a region in the configuration-space which, although
large (in every dimension) in relation to the wave length, is small in
relation to the practical dimensions of the configuration-space. Under
these conditions it is possible to choose a function of for an initial
time t0 in such a manner that it vanishes outside of the region , and
behaves, according to the Schrödinger equation, in such a manner that
it retains this property—approximately at least—also for a later time,
but with the region having passed at that time t into another region
G. In this manner one can, with a certain degree of approximation,
speak of the motion of the region G as a whole, and one can approx-
imate this motion by the motion of a point in the configuration-space.
This motion then coincides with the motion which is required by the
equations of classical mechanics.

Experiments on interference made with particle rays have given a
brilliant proof that the wave character of phenomena of motion as
assumed by the theory does, really, correspond to the facts. In addi-
tion to this, the theory succeeded, easily, in demonstrating the statis-
tical laws of the transition of a system from one quantum condition
to another under the action of external forces, which, from the stand-
point of classical mechanics, appears as a miracle. The external forces
were here represented by small additions of the potential energy as func-
tions of the time. Now, while in classical mechanics, such additions can
produce only correspondingly small alterations of the system, in the
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quantum mechanics they produce alterations of any magnitude how-
ever large, but with correspondingly small probability, a consequence
in perfect harmony with experience. Even an understanding of the
laws of radioactive decomposition, at least in their broad lines, was
provided by the theory.

Probably never before has a theory been evolved which has given
a key to the interpretation and calculation of such a heterogeneous
group of phenomena of experience as has the quantum theory. In spite
of this, however; I believe that the theory is apt to beguile us into error
in our search for a uniform basis for physics, because, in my belief, it
is an incomplete representation of real things, although it is the only
one which can be built out of the fundamental concepts of force and
material points (quantum corrections to classical mechanics). The
incompleteness of the representation is the outcome of the statistical
nature (incompleteness) of the laws. I will now justify this opinion.

I ask first: How far does the function describe a real condition
of a mechanical system? Let us assume the to be the periodic solu-
tions (put in the order of increasing energy values) of the Schrödinger
equation. I shall leave open, for the time being, the question as to how
far the individual are complete descriptions of physical conditions.
A system is first in the condition of lowest energy . Then dur-
ing a finite time a small disturbing force acts upon the system. At a
later instant one obtains then from the Schrödinger equation a func-
tion of the form

where the are (complex) constants. If the are “normalized,” then
is nearly equal to 1, etc. is small compared with 1. One may

now ask: Does describe a real condition of the system? If the answer
is yes, then we can hardly do otherwise than ascribe* to this condi-
tion a definite energy and, in particular, such an energy as exceeds

by a small amount (in any case Such an assumption
is, however, at variance with the experiments on electron impact such
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*Because, according to a well established consequence of the relativity theory, the energy of a complete system (at rest) is equal to its
inertia (as a whole). This, however, must have a well defined value.



as have been made by J. Franck and G. Hertz, if, in addition to this,
one accepts Millikan’s demonstration of the discrete nature of elec-
tricity. As a matter of fact, these experiments lead to the conclusion
that energy values of a state lying between the quantum values do not
exist. From this it follows that our function does not in any way
describe a homogeneous condition of the body, but represents rather
a statistical description in which the represent probabilities of the
individual energy values. It seems to be clear, therefore, that the Born
statistical interpretation of the quantum theory is the only possible
one. The function does not in any way describe a condition which
could be that of a single system; it relates rather to many systems, to
“an ensemble of systems” in the sense of statistical mechanics. If,
except for certain special cases, the function furnishes only statisti-
cal data concerning measurable magnitudes, the reason lies not only
in the fact that the operation of measuring introduces unknown ele-
ments, which can be grasped only statistically, but because of the very
fact that the function does not, in any sense, describe the condition
of one single system. The Schrödinger equation determines the time
variations which are experienced by the ensemble of systems which
may exist with or without external action on the single system.

Such an interpretation eliminates also the paradox recently
demonstrated by myself and two collaborators, and which relates to
the following problem.

Consider a mechanical system constituted of two partial systems A
and B which have interaction with each other only during limited time.
Let the function before their interaction be given. Then the
Schrödinger equation will furnish the function after the interaction
has taken place. Let us now determine the physical condition of the
partial system A as completely as possible by measurements. Then the
quantum mechanics allows us to determine the function of the par-
tial system B from the measurements made, and from the function
of the total system. This determination, however, gives a result which
depends upon which of the determining magnitudes specifying the con-
dition of A has been measured (for instance coordinates or momenta).
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Since there can be only one physical condition of B after the interac-
tion and which can reasonably not be considered as dependent on the
particular measurement we perform on the system A separated from B
it may be concluded that the function is not unambiguously coor-
dinated with the physical condition. This coordination of several 
functions with the same physical condition of system B shows again
that the function cannot be interpreted as a (complete) description
of a physical condition of a unit system. Here also the coordination of
the function to an ensemble of systems eliminates every difficulty.*

The fact that quantum mechanics affords, in such a simple man-
ner, statements concerning (apparently) discontinuous transitions from
one total condition to another without actually giving a representation
of the specific process, this fact is connected with another, namely the
fact that the theory, in reality, does not operate with the single system,
but with a totality of systems. The coefficients of our first example
are really altered very little under the action of the external force. With
this interpretation of quantum mechanics one can understand why this
theory can easily account for the fact that weak disturbing forces are
able to produce alterations of any magnitude in the physical condition
of a system. Such disturbing forces produce, indeed, only correspond-
ingly small alterations of the statistical density in the ensemble of sys-
tems, and hence only infinitely weak alterations of the functions, the
mathematical description of which offers far less difficulty than would
be involved in the mathematical representation of finite alterations
experienced by part of the single systems. What happens to the single
system remains, it is true, entirely unclarified by this mode of consid-
eration; this enigmatic happening is entirely eliminated from the rep-
resentation by the statistical manner of consideration.

But now I ask: Is there really any physicist who believes that we
shall never get any inside view of these important alterations in the
single systems, in their structure and their causal connections, and this
regardless of the fact that these single happenings have been brought

c

cr

c

c

c

c

429

A STUBBORNLY PERSISTENT ILLUSION

*The operation of measuring A, for example, thus involves a transition to a narrower ensemble of systems. The latter (hence also its
function) depends upon the point of view according to which this narrowing of the ensemble of systems is made.c



so close to us, thanks to the marvelous inventions of the Wilson cham-
ber and the Geiger counter? To believe this is logically possible with-
out contradiction; but, it is so very contrary to my scientific instinct
that I cannot forego the search for a more complete conception.

To these considerations we should add those of another kind
which also voice their plea against the idea that the methods intro-
duced by quantum mechanics are likely to give a useful basis for the
whole of physics. In the Schrödinger equation, absolute time, and also
the potential energy, play a decisive role, while these two concepts have
been recognized by the theory of relativity as inadmissible in princi-
ple. If one wishes to escape from this difficulty he must found the the-
ory upon field and field laws instead of upon forces of interaction.
This leads us to transpose the statistical methods of quantum mechanics
to fields, that is to systems of infinitely many degrees of freedom.
Although the attempts so far made are restricted to linear equations,
which, as we know from the results of the general theory of relativity,
are insufficient, the complications met up to now by the very ingen-
ious attempts are already terrifying. They certainly will rise sky high
if one wishes to obey the requirements of the general theory of rela-
tivity, the justification of which in principle nobody doubts.

To be sure, it has been pointed out that the introduction of a
space-time continuum may be considered as contrary to nature in view
of the molecular structure of everything which happens on a small
scale. It is maintained that perhaps the success of the Heisenberg
method points to a purely algebraical method of description of nature,
that is to the elimination of continuous functions from physics. Then,
however, we must also give up, by principle, the space-time contin-
uum. It is not unimaginable that human ingenuity will some day find
methods which will make it possible to proceed along such a path. At
the present time, however, such a program looks like an attempt to
breathe in empty space.

There is no doubt that quantum mechanics has seized hold of a
beautiful element of truth, and that it will be a test stone for any
future theoretical basis, in that it must be deducible as a limiting case
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from that basis, just as electrostatics is deducible from the Maxwell
equations of the electromagnetic field or as thermodynamics is
deducible from classical mechanics. However, I do not believe that
quantum mechanics will be the starting point in the search for this
basis, just as, vice versa, one could not go from thermodynamics (resp.
statistical mechanics) to the foundations of mechanics.

In view of this situation, it seems to be entirely justifiable seriously
to consider the question as to whether the basis of field physics can-
not by any means be put into harmony with the facts of the quan-
tum theory. Is this not the only basis which, consistently with today’s
possibility of mathematical expression, can be adapted to the require-
ments of the general theory of relativity? The belief, prevailing among
the physicists of today, that such an attempt would be hopeless, may
have its root in the unjustifiable idea that such a theory should lead,
as a first approximation, to the equations of classical mechanics for
the motion of corpuscles, or at least to total differential equations. As
a matter of fact up to now we have never succeeded in representing
corpuscles theoretically by fields free of singularities, and we can, a
priori, say nothing about the behavior of such entities. One thing,
however, is certain: if a field theory results in a representation of cor-
puscles free of singularities, then the behavior of these corpuscles with
time is determined solely by the differential equations of the field.

6. RELATIVITY THEORY AND CORPUSCLES

I shall now show that, according to the general theory of relativity, there
exist singularity-free solutions of field equations which can be inter-
preted as representing corpuscles. I restrict myself here to neutral
particles because, in another recent publication in collaboration with
Dr. Rosen, I have treated this question in a detailed manner, and because
the essentials of the problem can be completely shown by this case.

The gravitational field is entirely described by the tensor In
the three-index symbols there appear also the contravariants 
which are defined as the minors of the divided by the determinantgmn

gmn� s
mn ,

gmn.

431

A STUBBORNLY PERSISTENT ILLUSION



In order that the shall be defined and finite, it is not
sufficient that there shall be, for the environment of every part of the
continuum, a system of coordinates in which the and their first
differential quotients are continuous and differentiable, but it is also
necessary that the determinant g shall nowhere vanish. This last restric-
tion is, however, eliminated if one replaces the differential equations

by the left hand sides of which are whole rational
functions of the and of their derivatives.

These equations have the centrally symmetrical solutions indicated
by Schwarzschild

This solution has a singularity at since the co-efficient of 
(i.e. g11), becomes infinite on this hypersurface. If, however, we replace
the variable r by defined by the equation

we obtain

This solution behaves regularly for all values of The vanishing of
the coefficient of i.e. for results, it is true, in the con-
sequence that the determinant g vanishes for this value; but, with the
methods of writing the field equations actually adopted, this does not
constitute a singularity.

If extends from to then r runs from to 
and then back to while for such values of r as correspond to

there are no corresponding real values of Hence the
Schwarzschild solution becomes a regular solution by representation
of the physical space as consisting of two identical “shells” neighbor-
ing upon the hypersurface that is while for this hyper-
surface the determinant g vanishes. Let us call such a connection
between the two (identical) shells a “bridge.” Hence the existence of
such a bridge between the two shells in the finite realm corresponds
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to the existence of a material neutral particle which is described in a
manner free from singularities.

The solution of the problem of the motion of neutral particles
evidently amounts to the discovery of such solutions of the gravita-
tional equations (written free of denominators), as contain several
bridges.

The conception sketched above corresponds, a priori, to the atom-
istic structure of matter insofar as the “bridge” is by its nature a discrete
element. Moreover, we see that the mass constant m of the neutral
particles must necessarily be positive, since no solution free of singu-
larities can correspond to the Schwarzschild solution for a negative
value of m. Only the examination of the several-bridge-problem, can
show whether or not this theoretical method furnishes an explanation
of the empirically demonstrated equality of the masses of the particles
found in nature, and whether it takes into account the facts which the
quantum mechanics has so wonderfully comprehended.

In an analogous manner, it is possible to demonstrate that the
combined equations of gravitation and electricity (with appropriate
choice of the sign of the electrical member in the gravitational equa-
tions) produce a singularity-free bridge-representation of the electric
corpuscle. The simplest solution of this kind is that for an electrical
particle without gravitational mass.

So long as the important mathematical difficulties concerned with
the solution of the several-bridge-problem are not overcome, nothing
can be said concerning the usefulness of the theory from the physi-
cist’s point of view. However, it constitutes, as a matter of fact, the
first attempt towards the consistent elaboration of a field theory which
presents a possibility of explaining the properties of matter. In favor
of this attempt one should also add that it is based on the simplest
possible relativistic field equations known today.

SUMMARY

Physics constitutes a logical system of thought which is in a state of
evolution, and whose basis cannot be obtained through distillation
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by any inductive method from the experiences lived through, but
which can only be attained by free invention. The justification (truth
content) of the system rests in the proof of usefulness of the result-
ing theorems on the basis of sense experiences, where the relations
of the latter to the former can only be comprehended intuitively.
Evolution is going on in the direction of increasing simplicity of the
logical basis. In order further to approach this goal, we must make
up our mind to accept the fact that the logical basis departs more
and more from the facts of experience, and that the path of our
thought from the fundamental basis to these resulting theorems,
which correlate with sense experiences, becomes continually harder
and longer.

Our aim has been to sketch, as briefly as possible, the develop-
ment of the fundamental concepts in their dependence upon the facts
of experience and upon the strife towards the goal of internal perfec-
tion of the system. Today’s state of affairs had to be illuminated by
these considerations, as they appear to me. (It is unavoidable that his-
toric schematic representation is of a personal color.)

I try to demonstrate how the concepts of bodily objects, space,
subjective and objective time, are connected with one another and
with the nature of the experience. In classical mechanics the concepts
of space and time become independent. The concept of the bodily
object is replaced in the foundations by the concept of the material
point, by which means mechanics becomes fundamentally atomistic.
Light and electricity produce insurmountable difficulties when one
attempts to make mechanics the basis of all physics. We are thus led
to the field theory of electricity, and, later on to the attempt to base
physics entirely upon the concept of the field (after an attempted com-
promise with classical mechanics). This attempt leads to the theory of
relativity (evolution of the notion of space and time into that of the
continuum with metric structure).

I try to demonstrate, furthermore, why in my opinion the quan-
tum theory does not seem likely to be able to produce a usable foun-
dation for physics: one becomes involved in contradictions if one tries
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to consider the theoretical quantum description as a complete descrip-
tion of the individual physical system or happening.

On the other hand, up to the present time, the field theory is
unable to give an explanation of the molecular structure of matter and
of quantum phenomena. It is shown, however, that the conviction to
the effect that the field theory is unable to give, by its methods, a solu-
tion of these problems rests upon prejudice.
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THE FUNDAMENTS OF

THEORETICAL PHYSICS

From Albert Einstein: Out of my Later Years, Philosophical Library, 
New York 1950.

Address before the Eighth American Scientific Congress, Washington, 
May 15, 1490. First published in Science, vol. 91, May 1940.

Science is the attempt to make the chaotic diversity of our sense-expe-
rience correspond to a logically uniform system of thought. In this sys-
tem single experiences must be correlated with the theoretic structure
in such a way that the resulting coordination is unique and convincing.

The sense-experiences are the given subject-matter. But the theory
that shall interpret them is man-made. It is the result of an extremely
laborious process of adaptation: hypothetical, never completely final,
always subject to question and doubt.

The scientific way of forming concepts differs from that which we
use in our daily life, not basically, but merely in the more precise def-
inition of concepts and conclusions; more painstaking and systematic
choice of experimental material; and greater logical economy. By this
last we mean the effort to reduce all concepts and correlations to as
few as possible logically independent basic concepts and axioms.

What we call physics comprises that group of natural sciences
which base their concepts on measurements; and whose concepts and
propositions lend themselves to mathematical formulation. Its realm
is accordingly defined as that part of the sum total of our knowledge
which is capable of being expressed in mathematical terms. With the
progress of science, the realm of physics has so expanded that it seems
to be limited only by the limitations of the method itself.

The larger part of physical research is devoted to the development
of the various branches of physics, in each of which the object is the
theoretical understanding of more or less restricted fields of experi-
ence, and in each of which the laws and concepts remain as closely as
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possible related to experience. It is this department of science, with its
ever-growing specialization, which has revolutionized practical life in
the last centuries, and given birth to the possibility that man may at
last be freed from the burden of physical toil.

On the other hand, from the very beginning there has always been
present the attempt to find a unifying theoretical basis for all these
single sciences, consisting of a minimum of concepts and fundamen-
tal relationships, from which all the concepts and relationships of the
single disciplines might be derived by logical process. This is what we
mean by the search for a foundation of the whole of physics. The con-
fident belief that this ultimate goal may be reached is the chief source
of the passionate devotion which has always animated the researcher.
It is in this sense that the following observations are devoted to the
foundations of physics.

From what has been said it is clear that the word foundations in
this connection does not mean something analogous in all respects to
the foundations of a building. Logically considered, of course, the var-
ious single laws of physics rest upon this foundation. But whereas a
building may be seriously damaged by a heavy storm or spring flood,
yet its foundations remain intact, in science the logical foundation is
always in greater peril from new experiences or new knowledge than
are the branch disciplines with their closer experimental contacts. In
the connection of the foundation with all the single parts lies its great
significance, but likewise its greatest danger in face of any new factor.
When we realize this, we are led to wonder why the so-called revolu-
tionary epochs of the science of physics have not more often and more
completely changed its foundation than has actually been the case.

The first attempt to lay a uniform theoretical foundation was the
work of Newton. In his system everything is reduced to the following
concepts: (1) Mass points with invariable mass; (2) action at a distance
between any pair of mass points; (3) law of motion for the mass point.
There was not, strictly speaking, any all-embracing foundation, because
an explicit law was formulated only for the actions-at-a-distance of grav-
itation; while for other actions-at-a-distance nothing was established
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a priori except the law of equality of actio and reactio. Moreover, Newton
himself fully realized that time and space were essential elements, as
physically effective factors, of his system, if only by implication.

This Newtonian basis proved eminently fruitful and was regarded
as final up to the end of the nineteenth century. It not only gave results
for the movements of the heavenly bodies, down to the most minute
details, but also furnished a theory of the mechanics of discrete and
continuous masses, a simple explanation of the principle of the con-
servation of energy and a complete and brilliant theory of heat. The
explanation of the facts of electrodynamics within the Newtonian sys-
tem was more forced; least convincing of all, from the very beginning,
was the theory of light.

It is not surprising that Newton would not listen to a wave the-
ory of light; for such a theory was most unsuited to his theoretical
foundation. The assumption that space was filled with a medium con-
sisting of material points that propagated light waves without exhibit-
ing any other mechanical properties must have seemed to him quite
artificial. The strongest empirical arguments for the wave nature of
light, fixed speeds of propagation, interference, diffraction, polariza-
tion, were either unknown or else not known in any well-ordered syn-
thesis. He was justified in sticking to his corpuscular theory of light.

During the nineteenth century the dispute was settled in favor of
the wave theory. Yet no serious doubt of the mechanical foundation
of physics arose, in the first place because nobody knew where to find
a foundation of another sort. Only slowly, under the irresistible pres-
sure of facts, there developed a new foundation of physics, field-
physics.

From Newton’s time on, the theory of action-at-a-distance was
constantly found artificial. Efforts were not lacking to explain gravi-
tation by a kinetic theory, that is, on the basis of collision forces of
hypothetical mass particles. But the attempts were superficial and bore
no fruit. The strange part played by space (or the inertial system)
within the mechanical foundation was also clearly recognized, and crit-
icized with especial clarity by Ernst Mach.
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The great change was brought about by Faraday, Maxwell and
Hertz—as a matter of fact half-unconsciously and against their will. All
three of them, throughout their lives, considered themselves adherents
of the mechanical theory. Hertz had found the simplest form of the
equations of the electromagnetic field, and declared that any theory
leading to these equations was Maxwellian theory. Yet toward the end
of his short life he wrote a paper in which he presented as the foun-
dation of physics a mechanical theory freed from the force-concept.

For us, who took in Faraday’s ideas so to speak with our mother’s
milk, it is hard to appreciate their greatness and audacity. Faraday must
have grasped with unerring instinct the artificial nature of all attempts
to refer electromagnetic phenomena to actions-at-a-distance between
electric particles reacting on each other. How was each single iron fil-
ing among a lot scattered on a piece of paper to know of the single
electric particles running round in a nearby conductor? All these elec-
tric particles together seemed to create in the surrounding space a con-
dition which in turn produced a certain order in the filings. These
spatial states, to-day called fields, if their geometrical structure and
interdependent action were once rightly grasped, would, he was con-
vinced, furnish the clue to the mysterious electromagnetic actions. He
conceived these fields as states of mechanical stress in a space-filling
medium, similar to the states of stress in an elastically distended body.
For at that time this was the only way one could conceive of states
that were apparently continuously distributed in space. The peculiar
type of mechanical interpretation of these fields remained in the back-
ground—a sort of placation of the scientific conscience in view of the
mechanical tradition of Faraday’s time. With the help of these new
field concepts Faraday succeeded in forming a qualitative concept of
the whole complex of electromagnetic effects discovered by him and
his predecessors. The precise formulation of the time-space laws of
those fields was the work of Maxwell. Imagine his feelings when the
differential equations he had formulated proved to him that electro-
magnetic fields spread in the form of polarized waves and with the
speed of light! To few men in the world has such an experience been
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vouchsafed. At that thrilling moment he surely never guessed that the
riddling nature of light, apparently so completely solved, would con-
tinue to baffle succeeding generations. Meantime, it took physicists
some decades to grasp the full significance of Maxwell’s discovery, so
bold was the leap that his genius forced upon the conceptions of his
fellow-workers. Only after Hertz had demonstrated experimentally the
existence of Maxwell’s electromagnetic waves, did resistance to the new
theory break down.

But if the electromagnetic field could exist as a wave independ-
ent of the material source, then the electrostatic interaction could no
longer be explained as action-at-a-distance. And what was true for
electrical action could not be denied for gravitation. Everywhere
Newton’s actions-at-a-distance gave way to fields spreading with
finite velocity.

Of Newton’s foundation there now remained only the material
mass points subject to the law of motion. But J. J. Thomson pointed
out that an electrically charged body in motion must, according to
Maxwell’s theory, possess a magnetic field whose energy acted precisely
as does an increase of kinetic energy to the body. If, then, a part of
kinetic energy consists of field energy, might that not then be true of
the whole of the kinetic energy? Perhaps the basic property of matter,
its inertia, could be explained within the field theory? The question
led to the problem of an interpretation of matter in terms of field the-
ory, the solution of which would furnish an explanation of the atomic
structure of matter. It was soon realized that Maxwell’s theory could
not accomplish such a program. Since then many scientists have zeal-
ously sought to complete the field theory by some generalization that
should comprise a theory of matter; but so far such efforts have not
been crowned with success. In order to construct a theory, it is not
enough to have a clear conception of the goal. One must also have a
formal point of view which will sufficiently restrict the unlimited vari-
ety of possibilities. So far this has not been found; accordingly the
field theory has not succeeded in furnishing a foundation for the
whole of physics.
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For several decades most physicists clung to the conviction that a
mechanical substructure would be found for Maxwell’s theory. But the
unsatisfactory results of their efforts led to gradual acceptance of the
new field concepts as irreducible fundamentals—in other words,
physicists resigned themselves to giving up the idea of a mechanical
foundation.

Thus physicists held to a field-theory program. But it could not
be called a foundation, since nobody could tell whether a consistent
field theory could ever explain on the one hand gravitation, on the
other hand the elementary components of matter. In this state of
affairs it was necessary to think of material particles as mass points
subject to Newton’s laws of motion. This was the procedure of Lorentz
in creating his electron theory and the theory of the electromagnetic
phenomena of moving bodies.

Such was the point at which fundamental conceptions had arrived
at the turn of the century. Immense progress was made in the theo-
retical penetration and understanding of whole groups of new phe-
nomena; but the establishment of a unified foundation for physics
seemed remote indeed. And this state of things has even been aggravated
by subsequent developments. The development during the present cen-
tury is characterized by two theoretical systems essentially independ-
ent of each other: the theory of relativity and the quantum theory.
The two systems do not directly contradict each other; but they seem
little adapted to fusion into one unified theory. We must briefly dis-
cuss the basic idea of these two systems.

The theory of relativity arose out of efforts to improve, with ref-
erence to logical economy, the foundation of physics as it existed at
the turn of the century. The so-called special or restricted relativity
theory is based on the fact that Maxwell’s equations (and thus the law
of propagation of light in empty space) are converted into equations
of the same form, when they undergo Lorentz transformation. This
formal property of the Maxwell equations is supplemented by our fairly
secure empirical knowledge that the laws of physics are the same with
respect to all inertial systems. This leads to the result that the Lorentz
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transformation—applied to space and time coordinates—must govern
the transition from one inertial system to any other. The content of
the restricted relativity theory can accordingly be summarized in one
sentence: all natural laws must be so conditioned that they are covari-
ant with respect to Lorentz transformations. From this it follows that
the simultaneity of two distant events is not an invariant concept and
that the dimensions of rigid bodies and the speed of clocks depend
upon their state of motion. A further consequence was a modification
of Newton’s law of motion in cases where the speed of a given body
was not small compared with the speed of light. There followed also
the principle of the equivalence of mass and energy, with the laws of
conservation of mass and energy becoming one and the same. Once
it was shown that simultaneity was relative and depended on the frame
of reference, every possibility of retaining actions-at-a-distance within
the foundation of physics disappeared, since that concept presupposed
the absolute character of simultaneity (it must be possible to state the
location of the two interacting mass points “at the same time”).

The general theory of relativity owes its origin to the attempt to
explain a fact known since Galileo’s and Newton’s time but hitherto
eluding all theoretical interpretation: the inertia and the weight of a
body, in themselves two entirely distinct things, are measured by one
and the same constant, the mass. From this correspondence follows
that it is impossible to discover by experiment whether a given system
of coordinates is accelerated, or whether its motion is straight and uni-
form and the observed effects are due to a gravitational field (this is
the equivalence principle of the general relativity theory). It shatters
the concepts of the inertial system, as soon as gravitation enters in. It
may be remarked here that the inertial system is a weak point of the
Galilean-Newtonian mechanics. For there is presupposed a mysterious
property of physical space, conditioning the kind of coordination-
systems for which the law of inertia and the Newtonian law of motion
hold good.

These difficulties can be avoided by the following postulate:
natural laws are to be formulated in such a way that their form is
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identical for coordinate systems of any kind of states of motion. To
accomplish this is the task of the general theory of relativity. On the
other hand, we deduce from the restricted theory the existence of a
Riemannian metric within the time-space continuum, which, accord-
ing to the equivalence principle, describes both the gravitational field
and the metric properties of space. Assuming that the field equations
of gravitation are of the second differential order, the field law is clearly
determined.

Aside from this result, the theory frees field physics from the dis-
ability it suffered from, in common with the Newtonian mechanics,
of ascribing to space those independent physical properties which
heretofore had been concealed by the use of an inertial system. But it
can not be claimed that those parts of the general relativity theory
which can to-day be regarded as final have furnished physics with a
complete and satisfactory foundation. In the first place, the total field
appears in it to be composed of two logically unconnected parts, the
gravitational and the electromagnetic. And in the second place, this
theory, like the earlier field theories, has not up till now supplied an
explanation of the atomistic structure of matter. This failure has prob-
ably some connection with the fact that so far it has contributed noth-
ing to the understanding of quantum phenomena. To take in these
phenomena, physicists have been driven to the adoption of entirely
new methods, the basic characteristics of which we shall now discuss.

In the year nineteen hundred, in the course of a purely theoretic
investigation, Max Planck made a very remarkable discovery: the law
of radiation of bodies as a function of temperature could not be
derived solely from the laws of Maxwellian electrodynamics. To arrive
at results consistent with the relevant experiments, radiation of a given
frequency had to be treated as though it consisted of energy atoms of
the individual energy h.v., where h is Plank’s universal constant.
During the years following it was shown that light was everywhere
produced and absorbed in such energy quanta. In particular Niels
Bohr was able largely to understand the structure of the atom, on the
assumption that atoms can have only discrete energy values, and that the
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discontinuous transitions between them are connected with the emission
or absorption of such an energy quantum. This threw some light on the
fact that in their gaseous state elements and their compounds radiate and
absorb only light of certain sharply defined frequencies. All this was
quite inexplicable within the frame of the hitherto existing theories.
It was clear that at least in the field of atomistic phenomena the char-
acter of everything that happens is determined by discrete states and
by apparently discontinuous transitions between them, Planck’s con-
stant h playing a decisive role.

The next step was taken by De Broglie. He asked himself how the
discrete states could be understood by the aid of the current concepts,
and hit on a parallel with stationary waves, as for instance in the case
of the proper frequencies of organ pipes and strings in acoustics. True,
wave actions of the kind here required were unknown; but they could
be constructed, and their mathematical laws formulated, employing
Planck’s constant h. De Broglie conceived an electron revolving about
the atomic nucleus as being connected with such a hypothetical wave
train, and made intelligible to some extent the discrete character of
Bohr’s “permitted” paths by the stationary character of the correspon-
ding waves.

Now in mechanics the motion of material points is determined by
the forces or fields of force acting upon them. Hence it was to be
expected that those fields of force would also influence De Broglie’s
wave fields in an analogous way. Erwin Schrödinger showed how this
influence was to be taken into account, re-interpreting by an ingen-
ious method certain formulations of classical mechanics. He even suc-
ceeded in expanding the wave mechanical theory to a point where
without the introduction of any additional hypotheses, it became
applicable to any mechanical system consisting of an arbitrary num-
ber of mass points, that is to say possessing an arbitrary number of
degrees of freedom. This was possible because a mechanical system
consisting of n mass points is mathematically equivalent to a consid-
erable degree, to one single mass point moving in a space of 3 n
dimensions.
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On the basis of this theory there was obtained a surprisingly good
representation of an immense variety of facts which otherwise appeared
entirely incomprehensible. But on one point, curiously enough, there
was failure: it proved impossible to associate with these Schrödinger
waves definite motions of the mass points—and that, after all, had been
the original purpose of the whole construction.

The difficulty appeared insurmountable, until it was overcome by
Born in a way as simple as it was unexpected. The De Broglie-
Schrödinger wave fields were not to be interpreted as a mathematical
description of how an event actually takes place in time and space,
though, of course, they have reference to such an event. Rather they
are a mathematical description of what we can actually know about
the system. They serve only to make statistical statements and predic-
tions of the results of all measurements which we can carry out upon
the system.

Let me illustrate these general features of quantum mechanics by
means of a simple example: we shall consider a mass point kept inside
a restricted region G by forces of finite strength. If the kinetic energy
of the mass point is below a certain limit, then the mass point, accord-
ing to classical mechanics, can never leave the region G. But according
to quantum mechanics, the mass point, after a period not immedi-
ately predictable, is able to leave the region G, in an unpredictable
direction, and escape into surrounding space. This case, according to
Gamow, is a simplified model of radioactive disintegration.

The quantum theoretical treatment of this case is as follows: at
the time we have a Schrödinger wave system entirely inside G. But
from the time onwards, the waves leave the interior of G in all direc-
tions, in such a way that the amplitude of the outgoing wave is small
compared to the initial amplitude of the wave system inside G. The
further these outside waves spread, the more the amplitude of the waves
inside G diminishes, and correspondingly the intensity of the later
waves issuing from G. Only after infinite time has passed is the wave
supply inside G exhausted, while the outside wave has spread over an
ever-increasing space.

t0

t0
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But what has this wave process to do with the first object of our
interest, the particle originally enclosed in G? To answer this question,
we must imagine some arrangement which will permit us to carry out
measurements on the particle. For instance, let us imagine somewhere
in the surrounding space a screen so made that the particle sticks to
it on coming into contact with it. Then from the intensity of the waves
hitting the screen at some point, we draw conclusions as to the prob-
ability of the particle hitting the screen there at that time. As soon as
the particle has hit any particular point of the screen, the whole wave
field loses all its physical meaning; its only purpose was to make prob-
ability predictions as to the place and time of the particle hitting the
screen (or, for instance, its momentum at the time when it hits the
screen).

All other cases are analogous. The aim of the theory is to deter-
mine the probability of the results of measurement upon a system at
a given time. On the other hand, it makes no attempt to give a math-
ematical representation of what is actually present or goes on in space
and time. On this point the quantum theory of to-day differs funda-
mentally from all previous theories of physics, mechanistic as well as
field theories. Instead of a model description of actual space-time
events, it gives the probability distributions for possible measurements
as functions of time.

It must be admitted that the new theoretical conception owes its
origin not to any flight of fancy but to the compelling force of the
facts of experience. All attempts to represent the particle and wave fea-
tures displayed in the phenomena of light and matter, by direct course
to a space-time model, have so far ended in failure. And Heisenberg
has convincingly shown, from an empirical point of view, any decision
as to a rigorously deterministic structure of nature is definitely ruled
out, because of the atomistic structure of our experimental apparatus.
Thus it is probably out of the question that any future knowledge can
compel physics again to relinquish our present statistical theoretical
foundation in favor of a deterministic one which would deal directly
with physical reality. Logically the problem seems to offer two possi-
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bilities, between which we are in principle given a choice. In the end
the choice will be made according to which kind of description yields
the formulation of the simplest foundation, logically speaking. At the
present, we are quite without any deterministic theory directly describ-
ing the events themselves and in consonance with the facts.

For the time being, we have to admit that we do not possess any
general theoretical basis for physics, which can be regarded as its log-
ical foundation. The field theory, so far, has failed in the molecular
sphere. It is agreed on all hands that the only principle which could
serve as the basis of quantum theory would be one that constituted a
translation of the field theory into the scheme of quantum statistics.
Whether this will actually come about in a satisfactory manner,
nobody can venture to say.

Some physicists, among them myself, can not believe that we must
abandon, actually and forever, the idea of direct representation of
physical reality in space and time; or that we must accept the view
that events in nature are analogous to a game of chance. It is open to
every man to choose the direction of his striving; and also every man
may draw comfort from Lessing’s fine saying, that the search for truth
is more precious than its possession.
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THE COMMON LANGUAGE

OF SCIENCE

From Albert Einstein: Out of my Later Years, Philosophical Library, 
New York 1950.

Address broadcast to the meeting of the British Association for the
Advancement of Science, Sep. 28, 1941.

First published in Advancement of Science, London, vol 2. no. 5.

The first step towards language was to link acoustically or otherwise
commutable signs to sense-impressions. Most likely all sociable ani-
mals have arrived at this primitive kind of communication—at least
to a certain degree. A higher development is reached when further
signs are introduced and understood which establish relations between
those other signs designating sense-impression. At this stage it is
already possible to report somewhat complex series of impressions; we
can say that language has come to existence. If language is to lead at
all to understanding, there must be rules concerning the relations
between the signs on the one hand and on the other hand there must
be a stable correspondence between signs and impressions. In their
childhood individuals connected by the same language grasp these
rules and relations mainly by intuition. When man becomes conscious
of the rules concerning the relations between signs the so-called gram-
mar of language is established.

In an early stage the words may correspond directly to impres-
sions. At a later stage this direct connection is lost insofar as some
words convey relations to perceptions only if used in connection with
other words (for instance such words as: “is,” “or,” “thing”). Then
word-groups rather than single words refer to perceptions. When lan-
guage becomes thus partially independent from the background of
impressions a greater inner coherence is gained.

Only at this further development where frequent use is made of so-
called abstract concepts, language becomes an instrument of reasoning
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in the true sense of the word. But it is also this development which
turns language into a dangerous source of error and deception. Every-
thing depends on the degree to which words and word-combinations
correspond to the world of impression.

What is it that brings about such an intimate connection between
language and thinking? Is there no thinking without the use of language,
namely in concepts and concept-combinations for which words need
not necessarily come to mind? Has not every one of us struggled for
words although the connection between “things” was already clear?

We might be inclined to attribute to the act of thinking complete
independence from language if the individual formed or were able to
form his concepts without the verbal guidance of his environment. Yet
most likely the mental shape of an individual, growing up under such
conditions, would be very poor. Thus we may conclude that the men-
tal development of the individual and his way of forming concepts
depend to a high degree upon language. This makes us realize to what
extent the same language means the same mentality. In this sense
thinking and language are linked together.

What distinguishes the language of science from language as we
ordinarily understand the word? How is it that scientific language is
international? What science strives for is an utmost acuteness and clar-
ity of concepts as regards their mutual relation and their correspon-
dence to sensory data. As an illustration let us take the language of
Euclidian geometry and Algebra. They manipulate with a small num-
ber of independently introduced concepts, respectively symbols, such
as the integral number, the straight line, the point, as well as with signs
which designate the fundamental operations, that is, the connections
between those fundamental concepts. This is the basis for the con-
struction, respectively definition, of all other statements and concepts.
The connection between concepts and statements on the one hand and
the sensory data on the other hand is established through acts of count-
ing and measuring whose performance is sufficiently well determined.

The super-national character of scientific concepts and scientific
language is due to the fact that they have been set up by the best
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brains of all countries and all times. In solitude and yet in coopera-
tive effort as regards the final effect they created the spiritual tools for
the technical revolutions which have transformed the life of mankind
in the last centuries. Their system of concepts have served as a guide
in the bewildering chaos of perceptions so that we learned to grasp
general truths from particular observations.

What hopes and fears does the scientific method imply for
mankind? I do not think that this is the right way to put the ques-
tion. Whatever this tool in the hand of man will produce depends
entirely on the nature of the goals alive in this mankind. Once these
goals exist, the scientific method furnishes means to realize them. Yet
it cannot furnish the very goals. The scientific method itself would not
have led anywhere, it would not even have been born without a pas-
sionate striving for clear understanding.

Perfections of means and confusion of goals seem—in my opinion—
to characterize our age. If we desire sincerely and passionately the
safety, the welfare and the free development of the talents of all men,
we shall not be in want of the means to approach such a state. Even
if only a small part of mankind strives for such goals, their superiority
will prove itself in the long run.
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THE LAWS OF SCIENCE AND

THE LAWS OF ETHICS

From Albert Einstein: Out of my Later Years, Philosophical Library, 
New York 1950.

First published as foreword to Philipp Frank, Relativity—A Richer Truth,
Boston 1950.

Science searches for relations which are thought to exist independently
of the searching individual. This includes the case where man himself
is the subject. Or the subject of scientific statements may be concepts
created by ourselves, as in mathematics. Such concepts are not neces-
sarily supposed to correspond to any objects in the outside world.
However, all scientific statements and laws have one characteristic in
common: they are “true or false” (adequate or inadequate). Roughly
speaking, our reaction to them is “yes” or “no.”

The scientific way of thinking has a further characteristic. The
concepts which it uses to build up its coherent systems are not express-
ing emotions. For the scientist, there is only “being,” but no wishing,
no valuing, no good, no evil; no goal. As long as we remain within
the realm of science proper, we can never meet with a sentence of the
type: “Thou shalt not lie.” There is something like a Puritan’s restraint
in the scientist who seeks truth: he keeps away from everything vol-
untaristic or emotional. Incidentally, this trait is the result of a slow
development, peculiar to modern Western thought.

From this it might seem as if logical thinking were irrelevant for
ethics. Scientific statements of facts and relations, indeed, cannot pro-
duce ethical directives. However, ethical directives can be made
rational and coherent by logical thinking and empirical knowledge. If
we can agree on some fundamental ethical propositions, then other eth-
ical propositions can be derived from them, provided that the original
premises are stated with sufficient precision. Such ethical premises play
a similar role in ethics, to that played by axioms in mathematics.
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This is why we do not feel at all that it is meaningless to ask such
questions as: “Why should we not lie?” We feel that such questions
are meaningful because in all discussions of this kind some ethical
premises are tacitly taken for granted. We then feel satisfied when we
succeed in tracing back the ethical directive in question to these basic
premises. In the case of lying this might perhaps be done in some
way such as this: Lying destroys confidence in the statements of other
people. Without such confidence, social cooperation is made impos-
sible or at least difficult. Such cooperation, however, is essential to
make human life possible and tolerable. This means that the rule
“Thou shalt not lie” has been traced back to the demands: “Human
life shall be preserved” and “Pain and sorrow shall be lessened as
much as possible.”

But what is the origin of such ethical axioms? Are they arbitrary?
Are they based on mere authority? Do they stem from experiences of
men and are they conditioned indirectly by such experiences?

For pure logic all axioms are arbitrary, including the axioms of
ethics. But they are by no means arbitrary from a psychological and
genetic point of view. They are derived from our inborn tendencies to
avoid pain and annihilation, and from the accumulated emotional
reaction of individuals to the behavior of their neighbors.

It is the privilege of man’s moral genius, impersonated by inspired
individuals, to advance ethical axioms which are so comprehensive and
so well founded that men will accept them as grounded in the vast
mass of their individual emotional experiences. Ethical axioms are
found and tested not very differently from the axioms of science. Truth
is what stands the test of experience.
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AN ELEMENTARY DERIVATION

OF THE EQUIVALENCE OF MASS

AND ENERGY

From Albert Einstein: Out of my Later Years, Philosophical Library, 
New York 1950.

Originally published in Technion Journal 1946 [Yearbook of the American
Society for the Advancement of the Hebrew Institute of Technology in Haifa.

The following derivation of the law of equivalence, which has not
been published before, has two advantages. Although it makes use
of the principle of special relativity, it does not presume the formal
machinery of the theory but uses only three previously known laws:

1. The law of the conservation of momentum.
2. The expression for the pressure of radiation; that is, the momen-

tum of a complex of radiation moving in a fixed direction.
3. The well known expression for the aberration of light (influ-

ence of the motion of the earth on the apparent location of the fixed
stars—Bradley).

We now consider the following system. Let the body B rest freely
in space with respect to the system Two complexes of radiation S,K0.
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each of energy move in the positive and negative direction
respectively and are eventually absorbed by B. With this absorption

x0
E
2S¿



Now we consider this same process with respect to the system K,
which moves with respect to with the constant velocity v in the
negative direction. With respect to K the description of the process
is as follows:

Z0

K0

The body B moves in the positive Z direction with velocity v. The
two complexes of radiation now have directions with respect to K
which make an angle 	 with the x axis. The law of aberration states
that in the first approximation where c is the velocity of light.
From the consideration with respect to we know that the velocity
v of B remains unchanged by the absorption of S and S¿.

K0

a � c
v,

Now we apply the law of conservation of momentum with respect
to the z direction to our system in the coordinate-frame K.

I. Before the absorption let M be the mass of B; Mv is then the
expression of the momentum of B (according to classical mechanics).
Each of the complexes has the energy and hence, by a well known
conclusion of Maxwell’s theory, it has the momentum Rigorously
speaking this is the momentum of S with respect to However,K0.

E
2c.

E
2
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the energy of B increases by E. The body B stays at rest with respect
to by reasons of symmetry.K0



when v is small with respect to c, the momentum with respect to K
is the same except for a quantity of second order of magnitude 
compared to 1). The z-component of this momentum is or
with sufficient accuracy (except for quantities of higher order of
magnitude) or S and together therefore have a momen-
tum in the z direction. The total momentum of the system before
absorption is therefore

II. After the absorption let M� be the mass of B. We anticipate here
the possibility that the mass increased with the absorption of the
energy E (this is necessary so that the final result of our consideration
be consistent). The momentum of the system after absorption is then

We now assume the law of the conservation of momentum and
apply it with respect to the z direction. This gives the equation

or

This equation expresses the law of the equivalence of energy and mass.
The energy increase E is connected with the mass increase Since
energy according to the usual definition leaves an additive constant
free, we may so choose the latter that

E � Mc2

E
c 2.

M¿ � M �
E
c2

Mv �
E
c2 v � M¿v

M ¿v

Mv �
E
c2

# v

E  vc2

S¿E
2

# v
c 2

E
2c a

E
2c sin a

1 v
2

c2
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A
aberration, phenomenon of, 238
absence of matter, field equations for, 78–80
absolute space theory, 351
absolute velocity of a system, 36
abstraction, 405
acceleration

body, constant of, 178
co-ordinate, system of, 389
force and, 2
frames, bending light beams, 2
freedom of, 38–39
mass, resistance to, 393
mean, 243–244
uniform, 420

acoustical instrument, standing waves and, 
319–320, 329

action-at-a-distance theory, 438
addition

tensors, 274
of the velocities, theorem of (experiment of

Fizeau), 159–161
analytic geometry, 386
antisymmetrical extension of a six-vector, 73
antisymmetrical tensors, 59–60
appearances, totality of physical, 349
atoms

charge of, 306
chemistry, 347
crystals, 315–316
discrete energy values, structure and, 443–444
disintegrating, 395
electron revolving around nucleus, 444
as elementary quantum, 305
energy level, 313–314
Lorentz’s theory of matter, 354–356
mass, 304–305
mechanics of a system, 412–413
nucleus, 306, 444
particles, defining, 283
photons emitted by, 313–314
size, calculating, 357–358

attraction, particle, 285–286
authority, suspicion of, 340
autobiographical notes (Einstein), 337–382

books versus experiential learning, 343–344
early quests for meaning, 339–341
electro-magnetic foundation of physics, 360–362
Euclidean plane geometry, 342–343
field equations, finding for total field, 380–381
general theory of relativity, 369–371, 374–375
heat radiation investigations of Planck, 356–359
Lorentz’s theory of matter, 354–356
mathematics education, 344–346
Maxwell’s theory, 353–354
mechanics as basis of physics, 351–353
motivation for writing, 339
physics education, 346–351
special theory of relativity, 364–365, 364–369
statistical quantum theory, 371–372, 375–379

thinking, meaning of, 341–342
time of an event, 363-364
universal law of physical space, 371–372
universal principle, impossibility of, 362–363

axioms, truth of, 129–130

B
bar magnet

currents, 290
field, 291
induced currents, 295

behavior, probability and, 326
bending of light rays in gravitational field, 

43–45, 308
Bible, 339
billiard balls, 235–236
Black Holes, 126
Bohr, Niels, 314, 424, 443
Boltzmann, L., 106–107, 128, 358
books versus experiential learning, 343–344
Born, Max, 425
boundary conditions, 108–111
�-rays, 168
Brownian motion, law of the, 360–362

C
calculation, result and, 115–116
calculus, 344
Cartesian co-ordinate system, 193, 194

Gaussian curves, 196
ideal rigid bodies, 267
intervals, 268–269
measurable distance between two points, 271
space-lattice, members of, 276
vectors, 274

cathode rays, 168
cause and effect, connecting, 237
centrifugal force, 189–190
chemical processes

atomic hypothesis, 347
elementary quantum, 302

chest, movement against gravitational field example,
179–182

Christoffel, Elwin Bruno, 67–68
circle, 51
classical mechanics. See mechanics
classical physics, quantum physics versus, 331–332
clocks

events, measurability of, 386
gravitational fields and, 42–43
ideal, 364
intervals, rate of, 254
kinematics, 47
light, using as, 263–264
in motion, behavior of, 157–158
in motion, velocity of, 158
moving, 14–16
objective time, 409–410
on a rotating body of reference, 1–2, 189–191
simultaneity of, 147



clocks (continued) 
static gravitational field, 94–96
synchronizing, 7, 9
time, defining, 204
velocity, 15–16

clouds, measuring height of, 133
coal mine, change and, 300
color, wave length listed by, 314–315
common language of science, 448–450
comprehensibility, 403
conductors, charged, 292–293
conservation

of energy, 164, 392–393
field equations of gravitation, deducing, 104
in the general case, laws of

gravitational field, theory of, 84–85
mass and energy, principles of, 392–393
thermal energy, 393

of mass, 164, 392
of momentum and energy, laws of, 366, 453
of thermal energy, 393

constancy
scalar of curvature, 121
of velocities, law of, 142

constant limit, spatial infinity, 105–106
contact, permanent, 407
continua, mathematical treatment of, 197
continuity, co-variance of the equation of, 280
continuity-discontinuity quanta, 300–301
continuous medium

mechanics of, 413
motion, equations of, 278–280

continuum, Euclidean and non-Euclidean, 192–194
continuum, space-time

character, note on, 64–65
ether, role of, 244–245
Euclidean geometry, 51, 198–199, 409
four-dimensional, 111–112, 116, 254
nature versus, 430
not as Euclidean continuum, 200–202

contracovariant fundamental tensor, 63
contraction

mixed tensor, 60–61
tensors, 275

contravariant four-vectors, 56–57
contravariant tensors, 58
convection-currents, transformation of Maxwell-Hertz

equation with, 26–31
conventions, 340–341
co-ordinates, system of, 132–134

acceleration, 389
arbitrarily moving, 387–388
converting from stationary system, 9–14, 363
equivalency, 370
four to measure space and time, 53–55
Galilean system, 137, 198, 397
inertial, 335
Lorentz transformation, 154–155
Newton, 397
rotating, 251–252
tensors, defining by, 56, 274
transformations, general theory of relativity, 421

cord, oscillation of, 318–319
corpuscles

minimum of pressure/maximum of scalar of
curvature, 121

movement, 320
Newton’s theory, 308

relativity theory and, 431–433
Cosmological Considerations (cosmology), 105–107

boundary conditions, 108–111
calculation and result, 115–116
spatially finite universe with uniform distribution

of matter, 111–115
cosmological constant, 3, 126–127
covariant four-vectors, 57
covariant fundamental tensor, 62–63
covariant law for scalar field, 374
covariant partial differential equations, 422
covariant tensors, 58–59
crystals

atoms, 315–316
X rays diffraction through, 316, 317

curl of a contravariant vector, 73
current

acting upon magnetic pole, 287–288
associated with magnetic field, 290
disconnected, spark and, 298–299
induced, 295–299
magnetic field, 287, 294
Maxwell-Hertz equations, 330

curves
Gaussian co-ordinates, 195–197
tensor of curvature, 118
variants for, 68

D
dark energy, 3
de Broglie, Louis, 320, 425, 444, 445
deflection, ray of light in gravitational field, 44–45,

228–229
density

energy-tensor, defining, 93–94
mass, 256–257
Newton’s theory of mass, cosmological difficulties

of, 256–257
radiation, 359

Descartes, René, 408
deSitter, Akad. van Wetensch, 109, 111, 142
determinant of the fundamental tensor, 63
Dirac, Paul, 425
direction of travel, velocity and, 140
disintegrating atoms, 395
disk

centrifugal force acting on, 189–190
on globe, unbounded continuum, 258–261

distance
between atoms in crystals, 316
Euclidean geometry, 134
force between two bodies, 287
measurements, 132
relativity of conception of, 151–152
rigid body, 408
two points on rigid body, 130–131

divergence
of a contravariant vector, 72–73
of a six-vector, 73–74

Doppler’s principle for velocities, 23, 40

E
earlier and later events, 265
Eddington, Sir Arthur, 126
Einstein, Albert

autobiographical notes, 337–382
The Evolution of Physics, 283–336
The Meaning of Relativity, 263–282
Out of My Later Years, 383–456
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The Principle of Relativity, 1–124
Relativity—The Special and General Theory,

125–234
electrical current. See current
electricity. See also field theory

charged conductors, 292–293
currents associated with magnetic field, 290
development of theory, 239
discharge in a gas-containing tube, 312–313
elementary quanta, 301–306
elementary quanta of fluids, 302–303
equilibrium, 355
induced currents, 295–299
and magnetism theory, 1, 338, 367
mechanical interpretation difficulties, 287
mechanics and, 414–415
phenomenological physics, 413
poles at rest, 293–294
spark produced when current disconnected, 

298–299
electrodynamics, 187, 338

electrodynamical part, 18–31
convection-currents, transformation of Maxwell-

Hertz equation with, 26–31
light rays, transformation of the energy of, 23–26
magnetic field in motion, 18–23
Maxwell-Hertz equations, transformation, 18–23
negative electrical masses, 168
perfect reflectors, theory of the pressure of

radiation exerted on, 23–26
fundamental equations, 164–165
kinematical part

co-ordinates and times, converting from
stationary system, 9–14

length and time, relativity of, 7–9
moving rigid bodies and moving clocks, equa-

tions from, 14–16
simultaneity, definition of, 5–7
velocities, composition of, 16–18

light rays, transformation of the energy of, 23–26
Lorentz’s theory, 161, 240
magnetic field in motion, 18–23
Maxwell-Hertz equations, transformation, 18–23

perfect reflectors, theory of the pressure of
radiation exerted on, 23–26

electromagnetic field, 235
electric masses, introduction of, 350
energy components of, 90–91
equations for free space, 88–91
ether as bearer of, 239–240, 245
gravitational field and, 78–79, 422–423
invention, 334–335
special theory of relativity and, 367
in vacuo, 243

electromagnetic foundation of physics, 360–362
electromagnetic phenomena, 144
electromagnetic waves, 440
electronic waves, diffraction of, 317, 322
electron, kinetic energy of, 29–30
electrons

charges in different electric and magnetic external
fields, 304–305

influences on, 328
Maxwell-Lorentz theory of, 119
metal, extracting from, 307–308
particle versus wave, 322–323
photoelectric effect, 307–308
probability waves, 330–331

showering in same direction, 304
standing wave, 320
wave-length of moving, 321–322
wave train, 444

electrostatics, 187, 294, 431
elementary quanta of matter and electricity, 

301–306, 324
ellipses of planetary orbits, 400
empty space

equations of, 379–380
Maxwell-Hertz equations, 32
as seat of field, 416–417

energy
conservation of, 164, 392–393
electromagnetic field components, 90–91
increasing, 164–165
inert mass, increasing, 368–369
kinetic and potential, division into, 353
law of conservation of, 366, 453
level, atoms, 313–314
mass and, equivalence of, 392, 394, 453–455
potential, 352–353, 430

equality of inertial and gravitational mass, 179–182
equations, general laws of nature, 52
equilibrium, 355
equivalence

co-ordinate, system of, 370
principle of, 389

ether, 5, 235
as bearer of electromagnetic field, 239–240, 245
mechanics of theory, 415
relativity, theory of, 237–248
space-time continuum, role in, 244–245

ethics, laws of science and, 451–452
Euclidean geometry, 337, 342

autobiographical notes, 342–343
continuum

Minkowski, 198–199
non-Euclidean and, 192–194

curvature of space and, 400
distances, 134
flat model of universe, 125, 247-248
four-dimensional space, 113-114, 172-173
ideal rigid bodies, 267
logical process, 129-130
measurements by rules of, 50
plane, infinite continuum of, 258
postulates in Elements, 247
simplicity of, 252
solid bodies, 251
space-time continuum, 51, 408-409
straight lines, properties of, 268

Euler, Leonhard, 87–88, 347
events

earlier and later, 265
measurability of, 386
simultaneity, 5–7, 366, 386
time of, 363–364

The Evolution of Physics (Einstein and Infield), 
283–336

field, relativity
field as representation, 285–294
two pillars of the field theory, 295–299

quanta
continuity-discontinuity, 300–301
elementary quanta of matter and electricity, 

301–306, 324
of light, 306–312
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The Evolution of Physics (continued)
light spectra, 312–316
physics and reality, 333–335
probability waves, 323–333
waves of matter, 316–323

exact formulation, 203–205
expansion of universe, measurement of, 126
experience, 167–170, 385

books versus, 343–344
experimental confirmation, 225–232

light, deflection by gravitational field, 228–229
Mercury, motion of the perihelion of, 226–227
red, displacement of spectral lines towards,

230–232
extension of covariant tensor, 70–71

F
Faraday, Michael, 166, 295, 350, 415–416, 439
field of force. See gravitational field
field, relativity

forces, transition to, 353–354
as representation, 285–294
two pillars of the field theory, 295–299

field representation, 287
fields, 187, 415–416
field theory of gravitation, 235–236, 439

equations
finding for total field, 380–381
general form of, 82–84

gravitational field components, 77–78
limitations, 435
Lorentz, 373–374
Maxwell, 415–416
Newton, 372
physics and reality, 414–418

finite universe, 106, 212–215
FitzGerald, George Francis, 170
Fizeau, Armand

addition of the velocities, theorem of, 159–161
theory of the stationary luminiferous ether, 238

flat model of the universe, 125, 247–248
flatness of universe, 126
flat space, physics in. See relativity, special theory of
fluids

bodies, difference of two, 47–48
elementary quanta, 302–303

force
acceleration and, 2
expression for, 352–353
laws of, 411
lines of

of the gravitational field, 286
induction phenomena, 297
magnetic field, 288–289
metal plates, 303–304

on material point, 412
potential energy of system, 412–413

four–dimensional space
continuum, defining, 111–112, 116, 254
Euclidean geometry, 172–173
Minkowski, 223–224
time, 171–172

four-dimensional straight line movement in
gravitational field, 78

Franck, J., 428
free space, Maxwell’s electromagnetic field equations

for, 88–91
frequency values, 425

frictionless adiabatic fluid, Euler’s equations for,
87–88

friction, mass and energy, 393
function of the co-ordinates of the cord, 329
fundamental tensor (❑uv) (insert correct symbols,

please), 275
generally covariant equations, mathematical aids to

formulation of, 62–66, 71–72
new tensors, formation of, 65–66

G
Galilean relativity. See The Meaning of Relativity
Galileo Gaililei

classical mechanics, 387
co-ordinates system, 137, 198, 397

uniform motion of translation, 138–139
mass, accelerated system of reference, 49
observable fact of experience, 48
references

general theory of relativity, 204
space free of gravitational fields, 50–51
uniform rectilinear motion, 185

transformation, 155
Lorentz transformation versus, 263
moving uniformly, 169
time, 172
velocities, addition of, 159

Gamow, George, 445
gas

molecules, Boltzmann’s law of distribution,
106–107

particles
kinetic theory of, 357, 358, 414
method of statistics, 325–326

in tube, electricity discharge, 312–313
Gaussian co-ordinates, 195–197, 203–205
Gell-Mann, Murray, 283
general laws of nature, general co-variance for the

equations expressing, 50–53
generally covariant equations, mathematical aids to

formulation of, 55–77, 421
antisymmetrical extension of a six-vector, 73
contravariant and covariant four-vectors, 56–58
curl of a contravariant vector, 73
divergence

of a contravariant vector, 72–73
of a mixed tensor of the second rank, 74–75
of a six-vector, 73–74

fundamental tensor (❑uv) (insert correct symbols,
please), 62–66, 71–72

geodetic line, equation of, 66–68
multiplication of tensors, 60–62
particle, motion of, 66–68
Riemann-Christoffel tensor, 75–77
tensors

formation by differentiation, 68–71
of second and higher ranks, 58–60

general theory of relativity. See relativity, general
theory of

geodetic line
equation of, 66–68
movement in gravitational field, 78

geometrical invariant, 271–272
geometrical propositions, physical meaning of,

129–131
geometry

bodies at rest, 47
experience and, 249–262
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as intermediary between physical sciences and
math, 247–248

physical standpoint, 386
space and time, 386

globe, unbounded continuum, 258–261
gravitation

field equations, deducing from laws of
conservation, 104

mechanics and, 36–37
Newton’s law of, 166, 190, 237, 391, 400, 411

gravitational field, 177–178, 237
absence of matter, field equations for, 78–80
acceleration, imparting, 49, 389
bending of light rays in, 43–45
centrifugal force, 189–191
clocks and, 42–43
conservation in the general case, laws of, 84–85
describing, 431–432
electricity, combined equations with, 433
electromagnetic field and, 78–79, 422–423
ether and, 245
field-components, expression for, 77–78
field equations of gravitation, general form 

of, 82–84
Hamiltonian function, 80–82
law of, 372
light, deflection by, 228–229
lines of force, 286
material point, equations of motion of, 77–78
momentum and energy for matter, laws of, 85–86
momentum and energy, laws of, 80–82
Newton’s theory, divergence from, 400
pure, 375
ray of light, transmitting curvilinearly, 185–186
role in structure of elementary particles of matter,

117–124
cosmological question, 122–124
defects in present (1919) view, 117–119
scalars, field equations freed of, 119–122

separate existence (Hamilton’s Principle), 101
space and time absent, 187–188

gravitational lensing, 126
gravitational mass, 181, 368–369
gravitation, solution of problem of, 206–209
Grommer, J., 109

H
Hamilton’s Principle
gravitational field, theory of, 80–82

invariants, theory of, conditioning properties of
field equations of gravities, 101–104

principle of variation and field–equations of
gravitation and matter, 99–100

separate existence of gravitational field, 101
Hawkings, Stephen, ix–xi
heat

phenomena, 393, 394, 413, 414
radiation investigations of Planck, 356–359
wires between charged plates, 304

Heisenberg, Werner, 425
Hertz, G., 428
Hertz, Heinrich, 239–240, 416, 439–440. See also

Maxwell-Hertz equations
heuristic value of theory of relativity, 162
Hilbert, D.

defects in theory, 117
variation, theory of relativity from, 99

homogeneity of space, 276

Hubble, Edwin, 3, 126
Huyghen’s principle, 43–45, 97
hydrodynamics, 347, 413
hydrogen atom, 304–305

I
indivisible steps, change, 301–306, 324
induced currents, 295–299
induction, 297, 405
inertia, 351

of a body, dependence on energy content, 32–34
�-rays, 168
constant controlling, 399
co-ordinates, system of, 335
disk, centrifugal force acting on, 189–190
law of, 137, 388, 411
law of constancy of light velocity, 419
light and, 387
Mach’s theory, 351–352, 367, 438
magnetic field and, 417
material point of mass, 111
radiation conveying between emitting and

absorbing bodies, 34
inertial mass, 181

classical mechanics problem, 420
constant of accelerated body, 178
energy increasing, 368–369
equivalence, principle of, 389
gravitational, equality with, 179–182
gravitation of energy, 37–40

Infield, Leopold. See The Evolution of Physics
infinity, spatial, 105–106
inner multiplications of tensors, 61–62
intervals

Cartesian co-ordinate system, 268–269
rate of, 254
rigid body, 267–268
two points on rigid body, 267

invariants, theory of, 101–104
isotropy of space, 276

J
Jacobi’s theorem, 272
Jupiter, 45

K
Kaluza, Theodor, 423
kinematics

electrodynamics of moving bodies, 5–18
as laws regarding measuring bodies and 

clocks, 47
length and time, relativity of, 7–9
moving rigid bodies and moving clocks, equations

from, 14–16
simultaneity, definition of, 5–7
special theory of relativity and, 398, 400
velocities, composition of, 16–18

kinetic energy, 353
of the body, 166
mass, material point of, 163–164

kinetic theory, gas particles, 357, 358, 414
Kirchhoff, Gustav, 356

L
Laser Interferometer Gravitational wave Observatory

(LIGO), 248
Laser Interfoerometer Space Antenna (LISA), 248
later events, 265
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law of conservation of momentum and of energy for
the gravitational field, 81–82

law of constancy of light velocity, 419
law of constancy of velocities, 142
law of inertia, 137, 388, 411
law of motion, 168–169, 352, 375, 411
law of pressure, 453
law of the constancy of the velocity of light, 144
law of the parallelogram of velocities, 17
law of the transmission of light in vacuo, 155–156
laws of conservation. See conservation
length

distance, relativity of the conception of, 151–152
of interval, 268
measurements of, 132
of moving rods, 8–9, 14
and time, relativity of, 7–9
wave listed by color, 314–315

LeVerrier, Urbain, 98
light

aberration of, 453
bending, 2
clock, using as, 263–264
compact fields from which can’t escape, 126
curving by action of gravitational fields, 400
deflection by gravitational field, 228–229
Ether, theory of, 238
gravitation and propagation of

bending of light rays in gravitational field,
43–45

gravitation of energy, 37–40
physical nature of gravitational field, hypothesis

of, 35–37
time and velocity of light in gravitational field,

40–43
homogeneous, extracting electrons from metal,

307–308
law of constancy of velocity, 419
law of the constancy of the velocity of, 144
in liquid, traveling with particular velocity,

160–161
measuring height of clouds, 133
motion of material points, 415
particle properties of, 284
phenomenological physics, 413–414
quanta, 306–312
radiation, 312
ray

curvature of, 97
transformation of the energy of, 23–26
velocity of, 8, 11–13

as shower of photons, 309–310
source of, inertia and, 387
spectra, 312–316
speed of, 1, 2, 5, 366–367, 386
stars, lines of light from, 96
transmitting rectilinearly, 185–186
in vacuo, constancy of, 398
wave-motion of, 347, 438

lightning strike, simultaneity of, 145–146, 148
LIGO (Laser Interferometer Gravitational wave

Observatory), 248
lines of force

of the gravitational field, 286
induction phenomena, 297
magnetic field, 288–289
metal plates, 303–304

line, straight, 130

movement
not subject to external forces, 77–78
relative to two different points, 138

properties of, 268
liquid, light traveling through, 160–161
LISA (Laser Interfoerometer Space Antenna), 248
longitudinal mass, 29
Lorentz contraction, 51
Lorentz, Hendrick A., 144, 170. See also

Maxwell-Lorentz theory
covariant law for scalar field, 374
electrodynamic theory, 161, 240
empty space as seat of field, 416–417
field-theory of gravitation and, 373–374
stationary charges, 1
theory of matter, 354–356
variation, theory of relativity from, 99

Lorentz transformation, 26–27, 153–156
addition of velocities, 160
conditions, 198–199
demand, 387–388
Galileo’s versus, 263
limiting velocity, 157–158
simple derivation of, 218–222
space-time variables, replacing, 203
velocities, 153–154

Luminiferous Ether, 235, 238

M
Mach, Ernst, 47, 184, 348, 414

inertia, 351–352, 367, 438
mean acceleration, 243–244

magnetic field, 177
asymmetries, 4
current acting upon magnetic pole, 287–288
electrical current, 287, 294
inertia and, 417
lines of force, 288–289
masses, 415
in motion, 18–23
positive force, 288

magnetomotive forces, 21
maps, distances and, 300
marble slab rods example, 192–194
mass

conservation of, 164, 392
defined, 393–394
densities, 256–257
discontinuous nature of, 302
electric, introduction of, 350
and energy, equivalence of, 392–393, 394,

453–455
hydrogen atom, 304–305
inertia, 111
inertial and gravitational, equality of, 179–182
kinetic energy of a material point of, 163
magnetic field, 415
negative electrical, 168
reciprocal action between, 256

material particle. See particles
material phenomena, 86–98

free space, Maxwell’s electromagnetic field
equations for, 88–91

frictionless adiabatic fluid, Euler’s equations 
for, 87–88

Newton’s theory as a first approximation, 92–94
rods and clocks, behavior in static gravitational

field, 94–96
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material point
describing, 410–411
equations of motion of, 77–78
forces on, 412

mathematics
antisymmetrical extension of a six-vector, 73
contravariant and covariant four-vectors, 56–58
curl of a contravariant vector, 73
divergence

of a contravariant vector, 72–73
of a mixed tensor of the second rank, 74–75
of a six-vector, 73–74

education in autobiographical notes, 344–346
fundamental tensor (❑uv)   (insert correct symbols,

please), 62–66, 71–72
geodetic line, equation of, 66–68
multiplication of tensors, 60–62
particle, motion of, 66–68
physics versus, 246
real things, measuring, 249–253
Riemann-Christoffel tensor, 75–77
tensors

formation by differentiation, 68–71
of second and higher ranks, 58–60

matter
absence, field equations for, 78–80
density defining energy-tensor, 93–94
elementary particles, gravitational field and

structure of, 119–122
elementary quanta, 301–306
Lorentz’s theory, 354–356
molecular structure of, 435
uniform distribution in spatially finite universe,

111–115
waves of, 316–323

Maxwell-Hertz equations
for currents, 330
electromagnetic waves, 440
for empty space, 32
mechanics as basis of physics, 347
transformation, 18–23

Maxwell, James Clerk
asymmetries in moving bodies, 4
electric field theory, 415–416
electricity and magnetism theory, 1, 338, 367
electrodynamics, 187
electromagnetic action at distance, 166, 350,

415–416, 439–440
electromagnetic field theory

autobiographical notes, 353–354
as foundation of electron theory of Lorentz, 281,

441–442
fundamental equations of electrodynamics,

164–165
speed of light and, 5

empty space, equations of, 379–380
fields as fundamental variables, 353–354
free space, electromagnetic field equations 

for, 88–91
Maxwell-Lorentz theory

body moving uniformly, 169
electron, theory of, 119
ether and, 239
experimental arguments in favor of, 167–168

Maxwell-Poynting expressions, 91
mean acceleration, 243–244
The Meaning of Relativity (Einstein), 263–282
measurable distance between two points, 271

measurement
distance, 132
of events, 386
real things with mathematics, 249–253

measuring rods. See rods
mechanics

as basis of physics, 351–353
electricity and, 414–415
force laws and, 411
gravitation and, 36–37
inertial mass problem, 420
natural phenomena, insufficiency to describe, 139
observable fact of experience, 48
physics and reality, 406–414
physics, inadequacy as basis of, 349–351
potential energy as function of configuration, 412
relativity principle, 139
space and time, 135–136
special theory of relativity, 46
unsatisfactory aspects of, 183–184

Mercury
ellipses of planetary orbits, 400
mass density, 256
perihelion motion, 226–227, 391
rotation, 98

metal plates
electrons, extracting, 307–308
lines of force, 303–304

method of statistics, 325–326
quantum physics, 327–328

metrical character (curvature), four-dimensional space-
time continuum, 111–112, 116

Michelson, Albert, 169–170, 235
Mie, G., 117, 119
Milky Way

distribution of stars, 256–257
mean density, 256

Millikan, Robert, 428
Minkowski, Peter, 89

four-dimensional space, 171–173, 223–224, 365
objects to which motion cannot be applied, 242
space-time continuum as Euclidean continuum,

198–199
mixed multiplications of tensors, 61–62
mixed tensors, 59
molecules

elementary quanta of matter, 301–302
matter, structure of, 435

momentum
conservation of, 366, 453
gravitational field, theory of, 80–82, 85–86

money, change and, 300–301
Morley, Edward, 170

Ether, 235
speed of light, 1

motion. See also kinematics; wave
clocks and, 204
coordinate systems in any state of, 443
corpuscles, 320
describing, need for second body and, 397
distant masses, 48
law of, 2, 168–169, 178, 263, 346, 352, 355, 

375, 411
magnetic field creating electricity, 294
material particle, equations of, 277
of material point, 77–78, 93–94, 201–202, 415
neutral particle, 433
Newton’s law of, 2, 178, 263, 346, 355
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Morley, Edward (continued)
nonuniform, 176
rectilinear and uniform, body in, 387
retardation, 182
rigid bodies and moving clocks, equations from, 14–16
tensors, equations of, 278–279
theory of relativity and, 385
uniform acceleration, 420
uniform rectilinear, 185

motion of uniform translation. See relativity, special
theory of; special theory of relativity

movement
chest against gravitational field, 179–182
straight line, 138

moving bodies
electrodynamical part

convection-currents, transformation of 
Maxwell-Hertz equation with, 26–31

light rays, transformation of the energy of, 23–26
magnetic field in motion, 18–23
negative electrical masses, 168
perfect reflectors, theory of the pressure of

radiation exerted on, 23–26
kinematical part

co-ordinates and times, converting from
stationary system, 9–14

length and time, relativity of, 7–9
moving rigid bodies and moving clocks, equa-

tions from, 14–16
simultaneity, definition of, 5–7
velocities, composition of, 16–18

moving frames, transformations between. See Lorentz
transforms

multiplication of tensors, 60–62, 274

N
n-dimensional metrical spaces, 371–372
negative electrical fluid, 303
negative electrical masses, 168
Newton, Sir Isaac

absolute space theory, 351
co-ordinate system, 397
corpuscular theory, 308
cosmological difficulties of theories

mass densities, 256–257
universe as a whole, considerations, 210–211

equation of motion of material point, 93–94
field-law of gravitation, 372
finite universe, 106
as foundation of physics, 437–438
gravitation, law of, 166, 190, 237, 391, 400, 411
heat phenomena, 414
immediate action at a distance, 366
light, particle properties of, 284, 415
material phenomena, 92–94
motion, laws of, 2, 178, 263, 346, 355
sound-transmission theory, 347

Nishijima, Kazuhiko, 283
nodes, standing wave, 319
non-symmetrical tensor, 380
nuclear physics, 306
nuclear transformation processes, 166
nucleus, 306, 444

O
object, primitive concept of, 334
observable fact of experience, 48
optical phenomena, 414–415
orbit, mass-point in reference to inertial system, 371

orientation, rigid body, 268
outer multiplication of tensors, 60
Out of My Later Years (Einstein), 383–456

common language of science, 448–450
defining theory of relativity, 396–400
ethics, laws of science and, 451–452
general theory of relativity, 388–395
mass and energy, elementary derivation of equiva-

lence, 453–455
physics and reality

corpuscles, relativity theory and, 431–433
field concept, 414–418
mechanics and, 406–414
method of science, general consideration

concerning, 401–406
quantum theory and, 424–431
scientific system, stratification of, 404–406
theory of relativity, 418–424

theoretical physics, fundaments of, 436–447
theory of relativity, 385–395

P
pans on a gas range example, 183–184
parallel displacement vectors, 381
partial differential equations, 413, 417, 425
particles

attraction, 285–286
division, finite, 283–284
electrical elementary, describing, 254–255
motion of

equations of, 277
generally covariant equations, mathematical aids

to formulation of, 66–68
neutral, 433

physics, beginning of, 334
probability waves, 283, 330–331
waves, appearance as, 284
wave versus, 322–323

pendulum example, mass and energy, 392
perceptions, comparing experiences, 265–266
perfect reflectors, theory of the pressure of radiation

exerted on, 23–26
perihelion motion, Mercury, 226–227, 391
perpetuum mobile, 364–365
philosophy, effect on scientific thought, 266, 401
photoelectric effect, 284, 307–308, 320
photographic plate, 311–312, 322
photons, 284, 308

emission, 313–314
light as shower of, 309–310
probability waves, 330–331
X rays, 315

physical nature of gravitational field, hypothesis of,
35–37

physical space, universal law of, 371
physics

classical mechanics and, 411–412
education, 346–351
mathematics versus, 246
reality and

appearances, totality of physical, 349
corpuscles, relativity theory and, 431–433
field concept, 414–418
mechanics and, 406–414
method of science, general consideration

concerning, 401–406
phenomenological, 413–414
quanta, 333–335
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quantum theory and, 424–431
scientific system, stratification of, 404–406
theory of relativity, 418–424

pinhole
electrons and photons velocity through, 323–324
light beam through, 311–312, 322

Planck, Max, 308–309, 424–425
heat radiation investigations, 356–359
radiation of bodies as a function of temperature,

443
Poincaré, H., 252

changes of state and changes of position, 407
experience, relation to concepts, 266

Poisson’s equation, 105, 372
poles at rest, 293–294
Popper, Karl, 247
position, changes in, 266–267, 407
positive electrical fluid, 303
positive magnetic force, 288
potential energy, 353, 430
Poynting, 91
pressure

law of, 453
minimum, 121

primary concepts, 404
The Principle of Relativity (Einstein), 1–124

Cosmological Considerations, 105–116
boundary conditions, 108–111
calculation and result, 115–116
Newtonian theory, 105–107
spatially finite universe with uniform distribution

of matter, 111–115
electrodynamics of moving bodies, 4–31

electrodynamical part, 18–31
kinematical part, 5–18

generally covariant equations, mathematical aids to
formulation of, 55–77

antisymmetrical extension of a six–vector, 73
contravariant and covariant four-vectors, 56–58
curl of a contravariant vector, 73
divergence of a contravariant vector, 72–73
divergence of a mixed tensor of the second rank,

74–75
divergence of a six-vector, 73–74
fundamental tensor (❑uv) (insert correct symbols,

please), 62–66, 71–72
geodetic line, equation of, 66–68
multiplication of tensors, 60–62
particle, motion of, 66–68
Riemann-Christoffel tensor, 75–77
tensors, formation by differentiation, 68–71
tensors of second and higher ranks, 58–60

gravitational field, theory of
absence of matter, field equations for, 78–80
conservation in the general case, laws of, 84–85
field-components, expression for, 77–78
field equations of gravitation, general form 

of, 82–84
Hamiltonian function, 80–82
material point, equations of motion of, 77–78
momentum and energy for matter, laws of,

85–86
momentum and energy, laws of, 80–82

gravitation fields, role in structure of elementary
particles of matter, 117–124

cosmological question, 122–124
defects in present (1919) view, 117–119
scalars, field equations freed of, 119–122

Hamilton’s Principle
invariants, theory of, conditioning properties of

field equations of gravities, 101–104
principle of variation and field-equations of grav-

itation and matter, 99–100
separate existence of gravitational field, 101

inertia of a body, dependence on energy content,
32–34

light, influence of gravitation on the propagation
of, 35–45

bending of light rays in gravitational field,
43–45

gravitation of energy, 37–40
physical nature of gravitational field, hypothesis

of, 35–37
time and velocity of light in gravitational field,

40–43
material phenomena, 86–98

free space, Maxwell’s electromagnetic field equa-
tions for, 88–91

frictionless adiabatic fluid, Euler’s equations for,
87–88

Newton’s theory as a first approximation, 92–94
rods and clocks, behavior in static gravitational

field, 94–96
postulate of relativity, fundamental considerations

extension, need for, 47–50
four co-ordinates to measurement in space and

time, 53–55
general laws of nature, general co-variance for

the equations expressing, 50–53
observations, 46–47
space-time continuum, 50–53

principle of relativity, restricted sense, 138–140
principle of variation and field-equations of

gravitation and matter, 99–100
principle–theories, 396–397
probability, 326
probability waves

particles, defining, 283
quanta, 323–333

propagation of light, apparent incompatibility with
principle of relativity, 142–144

proposition, truth of, 344
Pythagorean theorem, 342

Q
quanta

continuity-discontinuity, 300–301
elementary quanta of matter and electricity,

301–306
of light, 306–312
light spectra, 312–316
physics and reality, 333–335
probability waves, 323–333
waves of matter, 316–323

Quantum Field Theory, 236
Quantum Mechanics, 383–384
quantum physics, 327–328
quantum theory

field theory, limitations of, 435
particles, appearance as waves, 284
physics and reality, 424–431

R
radiation

acceleration, freedom of, 38–39
of bodies as a function of temperature, 443
density, 359
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radiation (continued)
diminishing energy, 34
increasing energy, 164–165
light spectra, 312
photoelectric effect, 307–308
pressure, law of, 453
thermodynamics, 356, 362–363
transparent bodies, refraction-indices of, 349–350

radioactive disintegration, 326–327
railroad embankment examples

distance, relativity of the conception of, 151–152
nonuniform motion, 176
reference-body, choosing, 174–175
relativity of simultaneity, 148–150
retardation of motion, 182
simultaneity and time, 145–147
uniformly moving co-ordinate system, 138–140
velocities, addition of, 141

ray of light, moving, 8, 11–13
real things, measuring, 249–253
rectilinear and uniform motion, body in, 387
red, displacement of spectral lines towards, 230–232
refraction-indices of transparent bodies, 349–350
Reissner, Hans, 423
relativity, general theory of

autobiographical notes, 369–371, 374–375
mechanics, 139
Out of My Later Years, 388–395

relativity, special theory of, 364–369
mechanics, 46
physical interpretation of space and time in

classical mechanics, 386–388
relativity, theory of

defining, 396–400
ether and, 237–248
geometry and experience, 249–262
physics and reality, 418–424

Relativity—The Special and General Theory (Einstein),
125–234

addition of the velocities, theorem of (experiment
of Fizeau), 159–161

classical mechanics and, unsatisfactory aspects of,
183–184

clocks and measuring–rods on a rotating body of
reference, 189–191

co-ordinate, system of, 132–134
distance, relativity of conception of, 151–152
equality of inertial and gravitational mass, 179–182
Euclidean and non-Euclidean continuum, 192–194
exact formulation, 203–205
experience and, 167–170
experimental confirmation, 225–232

light, deflection by gravitational field, 228–229
Mercury, motion of the perihelion of, 226–227
red, displacement of spectral lines towards,

230–232
Galilean system of co-ordinates, 137
Gaussian co-ordinates, 195–197
general results, 163–166
geometrical propositions, physical meaning 

of, 129–131
gravitational field, 177–178
gravitation, solution of problem of, 206–209
heuristic value of theory of relativity, 162
inferences, 185–188
Lorentz transformation, 153–156, 218–222

measuring-rods and clocks in motion, behavior 
of, 157–158

Minkowski’s four-dimensional space, 171–173,
223–224

principle of relativity, restricted sense, 138–140
propagation of light, apparent incompatibility with

principle of relativity, 142–144
simultaneity, relativity of, 148–150
space and time in classical mechanics, 135–136
space-time continuum as Euclidean continuum,

198–199
space-time continuum is not Euclidean continuum,

200–202
special and general principle, 174–176
structure of space, 233–234
theorem of addition of velocities in classical

mechanics, 141
time, idea of in physics, 145–147
universe as a whole, considerations

“finite” and “unbounded” universe, possibility of,
212–215

Newton’s theory, cosmological difficulties of,
210–211

structure of space, 216–217
religion, experience with, 339–340
resonators, oscillation of all, 358–359
rest

bodies at, 9
geometry, 47

poles at, 293–294
result, calculation and, 115–116
Riemann, Bernhard

four-dimensional continuum of space-time, 254
metric, 443
n-dimensional metrical spaces, 371–372
tensor of curvature, 118

Riemann-Christoffel tensor, 75–77
rigid bodies

changes in position, 266–267
distance, 408
distance between two points, 130–131
interval, 267–268
moving, 14–16
in nature, 409
orientation, 268

rigid surfaces. See coordinates, system of
rods

analytic geometry, 386
ideal, 364
kinematics, 47
length of interval, 268
marble slab example, 192–193

temperature, 193–194
in motion, behavior of, 157–158
moving, length of, 8–9, 14
objects above surface of earth, 132–133
on a rotating body of reference, 1–2, 189–191
static gravitational field, 94–96

Rosen, Robert, 423, 431
rotation

co-ordinate, system of, 251–252
Mercury, 98

S
scalar field, 367–368

covariant law for, 374
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scalar of curvature, 121
scalars, field equations freed of

covariant law, 374
gravitation fields, role in structure of elementary

particles of matter, 119–122
Schrödinger, Erwin, 425–428, 444, 445
Schwarzschild, Karl, 126, 423, 432–433
scientific description, basis of, 132
scientific system, stratification of, 404–406
sense experiences, 401–403
simultaneity

clocks, 147
definition of, 5–7, 386–387
events, 366
railroad embankment examples, 145–147
relativity of, 148–150, 410

six-vector, divergence of, 73–74
size, atoms, 357–358
skew-symmetry tensors, 275, 282
solenoid, magnetic field, 291–292, 295
solid bodies, Euclidean geometry, 251
space

curvature, Euclidean geometry and, 399
empty as seat of field, 416–417
empty, equations of, 379–380
structure in universe as a whole, 216–217
structure of, 233–234
in time in pre-relativity physics, 265–282

space and time
absent gravitational fields, 187–188
accelerated frames, bending lightbeams, 2
in classical mechanics, 135–136
geometrical behavior, 400
in geometry, 386
Newtonian basis, 437–438
rigid bodies and, 409

space-time continuum
character, note on, 64–65
ether, role of, 244–245
Euclidean geometry, 51, 198–199, 409
four-dimensional, 111–112, 116, 254
nature versus, 430
not as Euclidean continuum, 200–202
postulate of relativity, fundamental considerations,

50–53
spark produced when current disconnected, 298–299
spatial infinity, 110–111

constant limit, 105–106
spatially finite universe with uniform distribution of

matter, 111–115
special and general principle, 174–176
special theory of relativity. See relativity, special

theory of
spectral lines, displacement towards red, 230–232
spectroscope, 312–313
speed of light, 1, 5, 366–367, 386
sphere, lines in space model, 286
standing wave, 318–319, 320
stars

Boltzmann’s law of distribution for gas molecules,
106–107

distribution, 256–257
lines of light from surface, 96

state, changes of, 407
statement of set of rules, 403
stationary charges, 1

stationary system, 9–14, 363
statistical quantum theory

merits of, 378–379
relativity, theory of, and, 375–376
Riemann’s n-dimensional metrical spaces, 371–372
u-function (insert symbol please), 376–377

statistics, method of, 325–326
quantum physics, 327–328

steam, pans on a gas range example, 183–184
stone, gravitational action of earth on, 177–178
straight line, 130

movement
not subject to external forces, 77–78
relative to two different points, 138

properties of, 268
subtraction of tensors, 274
sun

radiation emitted by, 312
rays traveling to (See gravitation)
viewing light through spectroscope, 313

supernova explosions, 127
symmetry

antisymmetrical extension of a six-vector, 73
antisymmetrical tensors, 59–60
tensors, 59, 275, 371–372, 380

synchronizing clocks, 7, 9

T
temperature

heat phenomena, 393, 394
radiation and, 358, 359–360, 443
rods on marble slab example, 193–194
wires between charged plates, 304

tensors, 272
addition and subtraction, 274
antisymmetrical, 59–60
contraction, 275
covariant fundamental, 62–63
of curvature, 118
defining by co-ordinates, 56, 274
formation by differentiation, 68–71
fundamental (❑uv) (insert correct symbols, please),

62–66, 275
motion, equations of, 278–279
multiplication, 60–62, 274
new, formation of, 65–66
non-symmetrical, 380
proof, 275–277
Riemann-Christoffel, 75-77
of second and higher ranks, 58–60
symmetrical, 59, 275, 371–372, 380
theorem, 275
transformation, 273–274
vectors, 274
virial theorem, 278

test body, 285–286
theorem of addition of velocities in classical

mechanics, 141
theory of the stationary luminiferous ether, 238
thermal energy, conservation of, 393
thermodynamics, 356, 360, 362–363

mechanical interpretation, 414
perpetuum mobile, 364–365
as principle-theory, 397

thinking, meaning of, 341–342
Thomson, J.J., 440
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time. See also simultaneity; space-time continuum
absolute, 335, 430
of an event, 363–364
clocks, 204
constant flow of, 263–264
force between two bodies, 287
four-dimensional space, 171–172
Galilei transformation, 172
gravitational fields and, 42–43
idea of in physics, 6, 145–147
length and, relativity of, 7–9
of light in gravitational field, 40–43
motion of a material body, 202
objective, introduction of, 409–410
railroad embankment examples, 145–147
simultaneity of events, 5–7, 386–387
space in pre-relativity physics, 265–282
speed of light, 5, 366–367, 386
stationary system, converting from, 9–14, 363
subjective feeling of, 334

time and space
absent gravitational fields, 187–188
accelerated frames, bending lightbeams, 2
in classical mechanics, 135–136
geometrical behavior, 400
in geometry, 386
Newtonian basis, 437–438
rigid bodies and, 409

tract
defined, 253
light paths, 254

train travel, change and, 300
trajectory, space and time in classical mechanics,

135–136
transformation

general theory of relativity, 421, 443
tensors, 273–274

translation, uniform motion, 138–139
transparent bodies, refraction-indices of, 349–350
transverse mass, 29
tube, oscillation of, 318

U
u-function (insert symbol please) statistical quantum

theory, 376–377
ultraviolet photon, 315
unbounded universe, possibility of, 212–215
uniform acceleration, 420
uniform rectilinear and nonrotary motion, 175
uniform rectilinear motion, 185
universal law of physical space, 371–372
universal principle, impossibility of, 362–363
universe

“finite” and “unbounded” possibilities of, 212–215,
255–262

finite nature of, 106
flatness theory, 125, 247–248
Newton’s theory, cosmological difficulties of, 210–211
structure of space, 216–217

V
variation, Hamilton’s Principle of, 99–100
vectors, 272

Cartesian co-ordinate system, 274
parallel displacement, 381

velocity
absolute of a system, 36
addition of, 159–161
�-rays, 168
clocks, 15–16, 158
composition of, 16–18
direction of travel, 140
electrical current, 287
electrons and photons through pinholes, 323–324
kinetic energy
of the body, 166
of a material point of mass, 163–164
law of constancy of, 142
law of constancy of light, 419
of light in gravitational field, 40–43
limiting, 157–158
Lorentz transformation, 153–154
propagation of light, 142–143
ray of light, moving, 8, 11–13
simultaneity and time, 149–150
in tensor equation, 277
theorem of the addition of, 141
violin string, oscillation of, 318–319
virial theorem of tensors, 278
volume scalar, 64

W
wave

of matter, 316–323
particle versus, 322–323

wave theory, 310
length listed by color, 314–315
of light, 347, 438
standing wave, 318–319
sunlight viewed through spectroscope, 313

weight of a system, 368
conservation of energy, 393
constant controlling, 399

Weyl, Hermann, 117
Wheeler, John Archibald, 2, 247
Wilkinson Microwave Anisotropy Probe (WMAP)

satellite, 126, 248
wires

broken, 298
heated between charged plates, 304
surface bound by, induction and, 297

wondering nature, 341–342

X
X rays

diffraction through crystal, 316, 317
photons comprising, 315
wave lengths, 322
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